Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Taylor's theorem
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Example === [[File:Expanimation.gif|thumb|400px|right|Approximation of <math display="inline">e^x</math> (blue) by its Taylor polynomials <math>P_k</math> of order <math display="inline">k=1,\ldots,7</math> centered at <math display="inline">x=0</math> (red).]] Suppose that we wish to find the approximate value of the function <math display="inline">f(x)=e^x</math> on the interval <math display="inline">[-1,1]</math> while ensuring that the error in the approximation is no more than 10<sup>β5</sup>. In this example we pretend that we only know the following properties of the exponential function: {{NumBlk|:|<math>e^0=1, \qquad \frac{d}{dx} e^x = e^x, \qquad e^x>0, \qquad x\in\R.</math>|{{EquationRef|β }}}} From these properties it follows that <math display="inline">f^{(k)}(x)=e^x</math> for all <math display="inline">k</math>, and in particular, <math display="inline">f^{(k)}(0)=1</math>. Hence the ''<math display="inline">k</math>''-th order Taylor polynomial of <math display="inline">f</math> at <math display="inline">0</math> and its remainder term in the Lagrange form are given by <math display="block"> P_k(x) = 1+x+\frac{x^2}{2!}+\cdots+\frac{x^k}{k!}, \qquad R_k(x)=\frac{e^\xi}{(k+1)!}x^{k+1},</math> where <math display="inline">\xi</math> is some number between 0 and ''x''. Since ''e''<sup>''x''</sup> is increasing by ({{EquationNote|β }}), we can simply use <math display="inline">e^x \leq 1</math> for <math display="inline">x \in [-1,0]</math> to estimate the remainder on the subinterval <math>[-1,0]</math>. To obtain an upper bound for the remainder on <math>[0,1]</math>, we use the property <math display="inline">e^\xi <e^x</math> for <math display="inline">0<\xi<x</math> to estimate <math display="block"> e^x = 1 + x + \frac{e^\xi}{2}x^2 < 1 + x + \frac{e^x}{2}x^2, \qquad 0 < x\leq 1 </math> using the second order Taylor expansion. Then we solve for ''e<sup>x</sup>'' to deduce that <math display="block"> e^x \leq \frac{1+x}{1-\frac{x^2}{2}} = 2\frac{1+x}{2-x^2} \leq 4, \qquad 0 \leq x\leq 1 </math> simply by maximizing the [[numerator]] and minimizing the [[denominator]]. Combining these estimates for ''e<sup>x</sup>'' we see that <math display="block"> |R_k(x)| \leq \frac{4|x|^{k+1}}{(k+1)!} \leq \frac{4}{(k+1)!}, \qquad -1\leq x \leq 1, </math> so the required precision is certainly reached, when <math display="block"> \frac{4}{(k+1)!} < 10^{-5} \quad \Longleftrightarrow \quad 4\cdot 10^5 < (k+1)! \quad \Longleftrightarrow \quad k \geq 9. </math> (See [[factorial]] or compute by hand the values <math display="inline">9! =362880</math> and <math display="inline">10! =3628800</math>.) As a conclusion, Taylor's theorem leads to the approximation <math display="block"> e^x = 1+x+\frac{x^2}{2!} + \cdots + \frac{x^9}{9!} + R_9(x), \qquad |R_9(x)| < 10^{-5}, \qquad -1\leq x \leq 1. </math> For instance, this approximation provides a [[decimal representation|decimal expression]] <math>e \approx 2.71828</math>, correct up to five decimal places.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Taylor's theorem
(section)
Add topic