Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Skew-symmetric matrix
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Spectral theory === Since a matrix is [[matrix similarity|similar]] to its own transpose, they must have the same eigenvalues. It follows that the [[eigenvalue]]s of a skew-symmetric matrix always come in pairs Β±Ξ» (except in the odd-dimensional case where there is an additional unpaired 0 eigenvalue). From the [[spectral theorem]], for a real skew-symmetric matrix the nonzero eigenvalues are all pure [[imaginary number|imaginary]] and thus are of the form <math>\lambda_1 i, -\lambda_1 i, \lambda_2 i, -\lambda_2 i, \ldots</math> where each of the <math>\lambda_k</math> are real. Real skew-symmetric matrices are [[normal matrix|normal matrices]] (they commute with their [[adjoint matrix|adjoints]]) and are thus subject to the [[spectral theorem]], which states that any real skew-symmetric matrix can be diagonalized by a [[unitary matrix]]. Since the eigenvalues of a real skew-symmetric matrix are imaginary, it is not possible to diagonalize one by a real matrix. However, it is possible to bring every skew-symmetric matrix to a [[block matrix|block diagonal]] form by a [[special orthogonal matrix|special orthogonal transformation]].<ref>{{cite book |first1=S. |last1=Duplij |first2=A. |last2=Nikitin |first3=A. |last3=Galkin |first4=A. |last4=Sergyeyev |first5=O.F. |last5=Dayi |first6=R. |last6=Mohapatra |first7=L. |last7=Lipatov |first8=G. |last8=Dunne |first9=J. |last9=Feinberg |first10=H. |last10=Aoyama |first11=T. |last11=Voronov |chapter=Pfaffian |chapter-url=https://link.springer.com/referenceworkentry/10.1007/1-4020-4522-0_393 |doi=10.1007/1-4020-4522-0_393 |editor-last=Duplij |editor-first=S. |editor2-last=Siegel |editor2-first=W. |editor3-last=Bagger |editor3-first=J. |title=Concise Encyclopedia of Supersymmetry |publisher=Springer |date=2004 |pages=298 |isbn=978-1-4020-1338-6 }}</ref><ref>{{cite journal|doi=10.1063/1.1724294|first=Bruno|last=Zumino|title=Normal Forms of Complex Matrices|journal= Journal of Mathematical Physics |volume=3|number=5|pages=1055β7 |year=1962|bibcode=1962JMP.....3.1055Z}}</ref> Specifically, every <math>2n \times 2n</math> real skew-symmetric matrix can be written in the form <math>A = Q\Sigma Q^\textsf{T}</math> where <math>Q</math> is orthogonal and <math display="block">\Sigma = \begin{bmatrix} \begin{matrix}0 & \lambda_1 \\ -\lambda_1 & 0\end{matrix} & 0 & \cdots & 0 \\ 0 & \begin{matrix}0 & \lambda_2 \\ -\lambda_2 & 0\end{matrix} & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & \begin{matrix}0 & \lambda_r\\ -\lambda_r & 0\end{matrix} \\ & & & & \begin{matrix}0 \\ & \ddots \\ & & 0 \end{matrix} \end{bmatrix}</math> for real positive-definite <math>\lambda_k</math>. The nonzero eigenvalues of this matrix are Β±Ξ»<sub>''k''</sub> ''i''. In the odd-dimensional case Ξ£ always has at least one row and column of zeros. More generally, every complex skew-symmetric matrix can be written in the form <math>A = U \Sigma U^{\mathrm T}</math> where <math>U</math> is unitary and <math>\Sigma</math> has the block-diagonal form given above with <math>\lambda_k</math> still real positive-definite. This is an example of the Youla decomposition of a complex square matrix.<ref>{{cite journal|doi=10.4153/CJM-1961-059-8|first=D. C. |last=Youla|title=A normal form for a matrix under the unitary congruence group|journal=Can. J. Math. |volume=13|pages=694β704 |year=1961|doi-access=free}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Skew-symmetric matrix
(section)
Add topic