Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Row and column spaces
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Basis=== The columns of {{mvar|A}} span the column space, but they may not form a [[basis (linear algebra)|basis]] if the column vectors are not [[linearly independent]]. Fortunately, [[elementary row operations]] do not affect the dependence relations between the column vectors. This makes it possible to use [[row reduction]] to find a [[basis (linear algebra)|basis]] for the column space. For example, consider the matrix :<math>A = \begin{bmatrix} 1 & 3 & 1 & 4 \\ 2 & 7 & 3 & 9 \\ 1 & 5 & 3 & 1 \\ 1 & 2 & 0 & 8 \end{bmatrix}.</math> The columns of this matrix span the column space, but they may not be [[linearly independent]], in which case some subset of them will form a basis. To find this basis, we reduce {{mvar|A}} to [[reduced row echelon form]]: :<math>\begin{bmatrix} 1 & 3 & 1 & 4 \\ 2 & 7 & 3 & 9 \\ 1 & 5 & 3 & 1 \\ 1 & 2 & 0 & 8 \end{bmatrix} \sim \begin{bmatrix} 1 & 3 & 1 & 4 \\ 0 & 1 & 1 & 1 \\ 0 & 2 & 2 & -3 \\ 0 & -1 & -1 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -2 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & -5 \\ 0 & 0 & 0 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}.</math><ref>This computation uses the [[Gaussian elimination|Gauss–Jordan]] row-reduction algorithm. Each of the shown steps involves multiple elementary row operations.</ref> At this point, it is clear that the first, second, and fourth columns are linearly independent, while the third column is a linear combination of the first two. (Specifically, {{math|1='''v'''<sub>3</sub> = −2'''v'''<sub>1</sub> + '''v'''<sub>2</sub>}}.) Therefore, the first, second, and fourth columns of the original matrix are a basis for the column space: :<math>\begin{bmatrix} 1 \\ 2 \\ 1 \\ 1\end{bmatrix},\;\; \begin{bmatrix} 3 \\ 7 \\ 5 \\ 2\end{bmatrix},\;\; \begin{bmatrix} 4 \\ 9 \\ 1 \\ 8\end{bmatrix}.</math> Note that the independent columns of the reduced row echelon form are precisely the columns with [[Pivot element|pivots]]. This makes it possible to determine which columns are linearly independent by reducing only to [[row echelon form|echelon form]]. The above algorithm can be used in general to find the dependence relations between any set of vectors, and to pick out a basis from any spanning set. Also finding a basis for the column space of {{mvar|A}} is equivalent to finding a basis for the row space of the [[transpose]] matrix {{math|''A''<sup>T</sup>}}. To find the basis in a practical setting (e.g., for large matrices), the [[singular-value decomposition]] is typically used.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Row and column spaces
(section)
Add topic