Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Right triangle
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Characterizations== A triangle <math>\triangle ABC</math> with sides <math>a \le b < c</math>, [[semiperimeter]] <math display=inline>s = \tfrac12(a+b+c)</math>, [[area]] <math>T,</math> [[altitude (triangle)|altitude]] <math>h_c</math> opposite the longest side, [[Circumscribed circle|circumradius]] <math>R,</math> [[Incircle and excircles of a triangle#Relation to area of the triangle|inradius]] <math>r,</math> [[Incircle and excircles of a triangle#Relation to area of the triangle|exradii]] <math>r_a, r_b, r_c</math> tangent to <math>a,b,c</math> respectively, and [[median (geometry)|medians]] <math>m_a, m_b, m_c</math> is a right triangle [[if and only if]] any one of the statements in the following six categories is true. Each of them is thus also a property of any right triangle. ===Sides and semiperimeter=== * <math>a^2+b^2=c^2\quad (\text{Pythagorean theorem})</math> * <math>(s-a)(s-b) = s(s-c)</math> * <math>s=2R+r.</math><ref>{{Cite web |url=http://www.artofproblemsolving.com/Forum/viewtopic.php?f=46&t=411120 |title=Triangle right iff s = 2R + r, ''Art of problem solving'', 2011 |access-date=2012-01-02 |archive-date=2014-04-28 |archive-url=https://web.archive.org/web/20140428221212/http://www.artofproblemsolving.com/Forum/viewtopic.php?f=46&t=411120 |url-status=dead }}</ref> * <math>a^2+b^2+c^2=8R^2.</math><ref name=Andreescu/> ===Angles=== * <math>A</math> and <math>B</math> are [[complementary angles|complementary]].<ref>{{Cite web |url=http://www.ricksmath.com/right-triangles.html |title=Properties of Right Triangles |access-date=2012-02-15 |archive-date=2011-12-31 |archive-url=https://web.archive.org/web/20111231222001/http://www.ricksmath.com/right-triangles.html |url-status=dead }}</ref> * <math>\cos{A}\cos{B}\cos{C}=0.</math><ref name=Andreescu/><ref name="CTK">CTK Wiki Math, ''A Variant of the Pythagorean Theorem'', 2011, [http://www.cut-the-knot.org/wiki-math/index.php?n=Trigonometry.AVariantOfPythagoreanTheorem] {{Webarchive|url=https://web.archive.org/web/20130805051705/http://www.cut-the-knot.org/wiki-math/index.php?n=Trigonometry.AVariantOfPythagoreanTheorem|date=2013-08-05}}.</ref> * <math>\sin^2{A}+\sin^2{B}+\sin^2{C}=2.</math><ref name=Andreescu/><ref name=CTK/> * <math>\cos^2{A}+\cos^2{B}+\cos^2{C}=1.</math><ref name=CTK/> * <math>\sin{2A}=\sin{2B}=2\sin{A}\sin{B}.</math> ===Area=== * <math>T=\frac{ab}{2}</math> * <math>T=r_ar_b=rr_c</math> * <math>T=r(2R+r)</math> * <math>T=\frac{(2s-c)^2-c^2}{4}=s(s-c)</math> * <math>T=|PA| \cdot |PB|,</math> where <math>P</math> is the tangency point of the [[Incircle and excircles of a triangle|incircle]] at the longest side <math>AB.</math><ref>{{citation |last=Darvasi |first=Gyula |journal=The Mathematical Gazette |pages=72–76 |title=Converse of a Property of Right Triangles |volume=89 |number=514 |date=March 2005|doi=10.1017/S0025557200176806 |s2cid=125992270 |doi-access=free }}.</ref> ===Inradius and exradii=== * <math>r=s-c=(a+b-c)/2</math> * <math>r_a=s-b=(a-b+c)/2</math> * <math>r_b=s-a=(-a+b+c)/2</math> * <math>r_c=s=(a+b+c)/2</math> * <math>r_a+r_b+r_c+r=a+b+c</math> * <math>r_a^2+r_b^2+r_c^2+r^2=a^2+b^2+c^2</math> * <math>r=\frac{r_ar_b}{r_c}.</math><ref name=Bell>{{citation|last=Bell |first=Amy|journal=Forum Geometricorum|pages=335–342|title=Hansen's Right Triangle Theorem, Its Converse and a Generalization|url=http://forumgeom.fau.edu/FG2006volume6/FG200639.pdf |archive-url=https://web.archive.org/web/20080725014729/http://forumgeom.fau.edu/FG2006volume6/FG200639.pdf |archive-date=2008-07-25 |url-status=live|volume=6|year=2006}}</ref> ===Altitude and medians=== {{right_angle_altitude.svg}} * <math>h_c=\frac{ab}{c}</math> * <math>m_a^2+m_b^2+m_c^2=6R^2.</math><ref name=Crux/>{{rp|Prob. 954, p. 26}} * The length of one [[Median (geometry)|median]] is equal to the [[Circumscribed circle|circumradius]]. * The shortest [[Altitude (triangle)|altitude]] (the one from the vertex with the biggest angle) is the [[geometric mean]] of the [[line segment]]s it divides the opposite (longest) side into. This is the [[right triangle altitude theorem]]. ===Circumcircle and incircle=== * The triangle can be inscribed in a [[semicircle]], with one side coinciding with the entirety of the diameter ([[Thales' theorem]]). * The [[Circumscribed circle|circumcenter]] is the [[midpoint]] of the longest side. * The longest side is a [[diameter]] of the [[Circumscribed circle#Circumscribed circles of triangles|circumcircle]] <math>(c=2R).</math> * The circumcircle is [[tangent]] to the [[nine-point circle]].<ref name=Andreescu>Andreescu, Titu and Andrica, Dorian, "Complex Numbers from A to...Z", Birkhäuser, 2006, pp. 109–110.</ref> * The [[Altitude (triangle)#Orthocenter|orthocenter]] lies on the circumcircle.<ref name=Crux/> * The distance between the [[Incircle and excircles of a triangle|incenter]] and the orthocenter is equal to <math>\sqrt{2}r</math>.<ref name=Crux/>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Right triangle
(section)
Add topic