Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Ray transfer matrix analysis
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Matrices for simple optical components == {| border="1" cellspacing="0" cellpadding="4" |- style="background-color: #AAFFCC" ! Element ! Matrix ! Remarks |- | Propagation in free space or in a medium of constant refractive index | align="center" |<math>\begin{pmatrix} 1 & d\\ 0 & 1 \end{pmatrix} </math> | {{mvar|d}} = distance<br/> |- | Refraction at a flat interface | align="center" | <math>\begin{pmatrix} 1 & 0 \\ 0 & \frac{n_1}{n_2} \end{pmatrix} </math> | {{math|''n''<sub>1</sub>}} = initial refractive index<br/> {{math|''n''<sub>2</sub>}} = final refractive index. |- | Refraction at a curved interface | align="center" | <math>\begin{pmatrix} 1 & 0 \\ \frac{n_1-n_2}{R \cdot n_2} & \frac{n_1}{n_2} \end{pmatrix} </math> | {{mvar|R}} = radius of curvature, {{math|''R'' > 0}} for convex (center of curvature after interface)<br/> {{math|''n''<sub>1</sub>}} = initial refractive index<br/>{{math|''n''<sub>2</sub>}} = final refractive index. |- | Reflection from a flat mirror | align="center" | <math> \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} </math>{{sfnp|Hecht|2002}} | Valid for flat mirrors oriented at any angle to the incoming beam. Both the ray and the optic axis are reflected equally, so there is no net change in slope or position. |- | Reflection from a curved mirror | align="center" | <math> \begin{pmatrix} 1 & 0 \\ -\frac{2}{R_e} & 1 \end{pmatrix} </math> | <math>R_e = R\cos\theta</math> effective radius of curvature in tangential plane (horizontal direction) <br/> <math>R_e = R/\cos\theta</math> effective radius of curvature in the sagittal plane (vertical direction)<br/> {{mvar|R}} = radius of curvature, {{math|''R'' > 0}} for concave, valid in the paraxial approximation<br/> {{mvar|θ}} is the mirror angle of incidence in the horizontal plane. |- | Thin lens | align="center" | <math> \begin{pmatrix} 1 & 0 \\ -\frac{1}{f} & 1 \end{pmatrix} </math> | {{mvar|f}} = focal length of lens where {{math|''f'' > 0}} for convex/positive (converging) lens. Only valid if the focal length is much greater than the thickness of the lens. |- | Thick lens | align="center" | <math>\begin{pmatrix} 1 & 0 \\ \frac{n_2-n_1}{R_2n_1} & \frac{n_2}{n_1} \end{pmatrix} \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \frac{n_1-n_2}{R_1n_2} & \frac{n_1}{n_2} \end{pmatrix}</math> | {{math|''n''<sub>1</sub>}} = refractive index outside of the lens. <br/> {{math|''n''<sub>2</sub>}} = refractive index of the lens itself (inside the lens). <br/> {{math|''R''<sub>1</sub>}} = Radius of curvature of First surface. <br/> {{math|''R''<sub>2</sub>}} = Radius of curvature of Second surface.<br/> {{mvar|t}} = center thickness of lens. |- | Single prism | align="center" | <math> \begin{pmatrix} k & \frac{d}{nk} \\ 0 & \frac{1}{k} \end{pmatrix} </math> | <math>k = (\cos\psi / \cos\phi)</math> is the [[beam expander|beam expansion]] factor, where {{mvar|ϕ}} is the angle of incidence, {{mvar|ψ}} is the angle of refraction, {{mvar|d}} = prism path length, {{mvar|n}} = refractive index of the prism material. This matrix applies for orthogonal beam exit.<ref name=TLO>{{harvp|Duarte|2003|loc= Chapter 6}}</ref> |- | Multiple prism beam expander using {{mvar|r}} prisms | align="center" | <math> \begin{pmatrix} M & B \\ 0 & \frac{1}{M} \end{pmatrix} </math> | {{mvar|M}} is the total beam magnification given by {{math|1= ''M'' = ''k''{{sub|1}}''k''{{sub|2}}''k''{{sub|3}}···''k{{sub|r}}''}}, where {{mvar|k}} is defined in the previous entry and {{mvar|B}} is the total optical propagation distance{{clarify|date=July 2019}} of the multiple prism expander.<ref name=TLO /> |}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Ray transfer matrix analysis
(section)
Add topic