Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Quantization (physics)
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Geometric quantization == {{main|Geometric quantization}} In mathematical physics, geometric quantization is a mathematical approach to defining a quantum theory corresponding to a given classical theory. It attempts to carry out quantization, for which there is in general no exact recipe, in such a way that certain analogies between the classical theory and the quantum theory remain manifest. For example, the similarity between the Heisenberg equation in the Heisenberg picture of quantum mechanics and the Hamilton equation in classical physics should be built in. A more geometric approach to quantization, in which the classical phase space can be a general symplectic manifold, was developed in the 1970s by [[Bertram Kostant]] and [[Jean-Marie Souriau]]. The method proceeds in two stages.<ref>{{harvnb|Hall|2013}} Chapters 22 and 23</ref> First, once constructs a "prequantum Hilbert space" consisting of square-integrable functions (or, more properly, sections of a line bundle) over the phase space. Here one can construct operators satisfying commutation relations corresponding exactly to the classical Poisson-bracket relations. On the other hand, this prequantum Hilbert space is too big to be physically meaningful. One then restricts to functions (or sections) depending on half the variables on the phase space, yielding the quantum Hilbert space.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Quantization (physics)
(section)
Add topic