Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Partially ordered set
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Notation == Given a set <math>P</math> and a partial order relation, typically the non-strict partial order <math>\leq</math>, we may uniquely extend our notation to define four partial order relations <math>\leq,</math> <math><,</math> <math>\geq,</math> and <math>></math>, where <math>\leq</math> is a non-strict partial order relation on <math>P</math>, <math> < </math> is the associated strict partial order relation on <math>P</math> (the [[irreflexive kernel]] of <math>\leq</math>), <math>\geq</math> is the dual of <math>\leq</math>, and <math> > </math> is the dual of <math> < </math>. Strictly speaking, the term ''partially ordered set'' refers to a set with all of these relations defined appropriately. But practically, one need only consider a single relation, <math>(P,\leq)</math> or <math>(P,<)</math>, or, in rare instances, the non-strict and strict relations together, <math>(P,\leq,<)</math>.<ref>{{cite book |last1=Avigad |first1=Jeremy |last2=Lewis |first2=Robert Y. |last3=van Doorn |first3=Floris |title=Logic and Proof |date=29 March 2021 |edition=Release 3.18.4 |url=https://leanprover.github.io/logic_and_proof/relations.html#more-on-orderings |access-date=24 July 2021 |chapter=13.2. More on Orderings|quote=So we can think of every partial order as really being a pair, consisting of a weak partial order and an associated strict one.}}</ref> The term ''ordered set'' is sometimes used as a shorthand for ''partially ordered set'', as long as it is clear from the context that no other kind of order is meant. In particular, [[Total order|totally ordered sets]] can also be referred to as "ordered sets", especially in areas where these structures are more common than posets. Some authors use different symbols than <math>\leq</math> such as <math>\sqsubseteq</math><ref>{{cite web |last1=Rounds |first1=William C. |title=Lectures slides |url=http://www.eecs.umich.edu/courses/eecs203-1/203-Mar7.pdf |website=EECS 203: DISCRETE MATHEMATICS |access-date=23 July 2021 |date=7 March 2002}}</ref> or <math>\preceq</math><ref>{{cite book |last1=Kwong |first1=Harris |title=A Spiral Workbook for Discrete Mathematics |date=25 April 2018 |url=https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/A_Spiral_Workbook_for_Discrete_Mathematics_(Kwong)/07%3A_Relations/7.04%3A_Partial_and_Total_Ordering |access-date=23 July 2021 |language=en |chapter=7.4: Partial and Total Ordering}}</ref> to distinguish partial orders from total orders. When referring to partial orders, <math>\leq</math> should not be taken as the [[complementary relation|complement]] of <math> > </math>. The relation <math> > </math> is the converse of the irreflexive kernel of <math>\leq</math>, which is always a subset of the complement of <math>\leq</math>, but <math> > </math> is equal to the complement of <math>\leq</math> [[if, and only if]], <math>\leq</math> is a total order.{{efn|A proof can be found [[:File:PartialOrders redundencies.pdf|here]].}}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Partially ordered set
(section)
Add topic