Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Pafnuty Chebyshev
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Mathematical contributions == [[File:Чебышёв, Пафнутий Львович.jpg|thumb|right|Pafnuty Chebyshev]] Chebyshev is known for his work in the fields of [[probability]], [[statistics]], [[mechanics]], and [[number theory]]. The [[Chebyshev inequality]] states that if <math>X</math> is a [[random variable]] with [[standard deviation]] ''σ'' > 0, then the probability that the outcome of <math>X</math> is <math>d = k\sigma</math> or more away from its mean is at most <math>1/k^2 = \sigma^2/d^2</math>: : <math>\Pr(|X - {\mathbf E}(X)| \ge d\ )\le \frac {\sigma^2}{d^2}.</math> The Chebyshev inequality is used to prove the [[weak law of large numbers]].{{citation needed|date= October 2022}} The [[Bertrand's postulate|Bertrand–Chebyshev theorem]] (1845, 1852) states that for any <math>n > 3</math>, there exists a [[prime numbers|prime number]] <math>p</math> such that <math>n < p < 2n</math>. This is a consequence of the Chebyshev inequalities for the number <math>\pi(n)</math> of [[prime numbers]] less than <math>n</math>: : for <math> x </math> sufficiently large, <math> A\frac{x}{\log(x)} < \pi(x) < \frac{6A}{5}\frac{x}{\log(x)} \; \text{, with } \; A \approx 0.92129.</math><ref>{{cite journal | author=Tchebichef | title=Mémoire sur les nombres premiers | journal=Journal de Mathématiques Pures et Appliquées | date=1852 | issn=1776-3371 | pages=366–390 | url=https://eudml.org/doc/234762 | access-date=26 November 2024 | lang=fr}} [https://nonagon.org/ExLibris/chebyshevs-memoire-nombres-premiers-section-1 English translation] by Mike Bertrand (November 5, 2020).</ref> Fifty years later, in 1896, the celebrated [[prime number theorem]] was proved, independently, by [[Jacques Hadamard]]<ref name="Hadamard1896">{{Citation|last=Hadamard|first=Jacques|author-link=Jacques Hadamard|year=1896|title=Sur la distribution des zéros de la fonction ζ(s) et ses conséquences arithmétiques.|journal=Bulletin de la Société Mathématique de France|publisher=Société Mathématique de France|volume=24|pages=199–220|url=http://www.numdam.org/item/?id=BSMF_1896__24__199_1 |archive-url=https://web.archive.org/web/20240910153636/http://www.numdam.org/item/?id=BSMF_1896__24__199_1 |archive-date=2024-09-10 }}</ref> and [[Charles Jean de la Vallée Poussin]]:<ref name="de la Vallée Poussin1896">{{Citation|last=de la Vallée Poussin|first=Charles-Jean|author-link=Charles Jean de la Vallée Poussin|year=1896|title=Recherches analytiques sur la théorie des nombres premiers.|journal=Annales de la Société scientifique de Bruxelles|publisher=Imprimeur de l'Académie Royale de Belgique|volume=20 B; 21 B|pages=183-256, 281-352, 363-397; 351-368|url=http://sciences.amisbnf.org/fr/livre/recherches-analytiques-de-la-theorie-des-nombres-premiers}}</ref> : <math>\lim_{x\to\infty}\frac{\;\pi(x)\log(x)\;}{x\;} = 1</math> using ideas introduced by [[Bernhard Riemann]]. Chebyshev is also known for the [[Chebyshev polynomial]]s and the [[Chebyshev bias]] – the difference between the number of primes that are congruent to 3 (modulo 4) and 1 (modulo 4).<ref>{{cite journal | last1=Rubinstein | first1=Michael | last2=Sarnak | first2=Peter | title=Chebyshev's Bias | journal=Experimental Mathematics | volume=3 | issue=3 | date=1994 | issn=1058-6458 | doi=10.1080/10586458.1994.10504289 | pages=173–197}}</ref> Chebyshev was the first person to think systematically in terms of [[random variables]] and their [[moment (mathematics)|moments]] and [[expected value|expectations]].<ref>{{cite journal|journal=Bulletin of the American Mathematical Society |series=New Series|volume=3|number=1|date=July 1980|last=Mackey|first=George|title=Harmonic analysis as the exploitation of symmetry-a historical survey|page=549|doi=10.1090/S0273-0979-1980-14783-7|doi-access=free|hdl=1911/63317|hdl-access=free}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Pafnuty Chebyshev
(section)
Add topic