Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Natural deduction
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Propositional language syntax== {{Main article|Propositional calculus#Syntax}}This section defines the [[formal syntax]] for a [[Propositional calculus#Language|propositional logic language]], contrasting the common ways of doing so with a Gentzen-style way of doing so. === Common definition styles === In [[classical logic|classical]] [[propositional calculus]] the [[formal language]] <math>\mathcal{L}</math> is usually defined (here: by [[recursive definition|recursion]]) as follows:{{sfn|Allen|Hand|2022|p=12}} # Each [[propositional variable]] is a [[Well-formed formula|formula]]. # "<math>\bot</math>" is a formula. # If <math>\varphi</math> and <math>\psi</math> are formulae, so are <math>(\neg\phi)</math>, <math>(\varphi \land \psi)</math>, <math>(\varphi \lor \psi)</math>, <math>(\varphi \to \psi)</math>, <math>(\varphi \leftrightarrow \psi)</math>. # Nothing else is a formula. [[Negation]] (<math>\neg</math>) is taken as a primitive [[logical connective]], meaning it is assumed as a basic operation and not defined in terms of other connectives. In some logical systems, especially [[minimal logic| minimal]], [[intuitionistic logic|intuitionistic]], or [[Hilbert system]]s, negation is defined as implication to [[False (logic)#False, negation and contradiction|falsity]] :<math>\neg \phi \; \overset{\text{def}}{=} \; \phi \to \bot</math>, where <math>\bot</math> (falsum) represents a contradiction or absolute falsehood.{{sfn|Prawitz|1965}}{{sfn|von Plato|2013|p=18}}{{sfn|Van Dalen|2013}} The language (here: in [[BNF grammar|BNF]]){{sfn|Hansson|Hendricks|2018|p=38}}{{sfn|Ayala-Rincón|de Moura|2017|pages=2,20}} is then :<math>\phi ::= a_1, a_2, \ldots \mid \bot \mid (\phi \land\phi) \mid (\phi \lor \phi) \mid (\phi \to\phi) \mid (\phi \leftrightarrow \phi)</math> Some authors, such as [[David Bostock (philosopher)|Bostock]], use <math>\bot</math> and <math>\top</math>, and also define <math>\neg</math> as primitives.{{sfn|Bostock|1997|p=21}}<ref>This is required in [[paraconsistent logic]]s that do not treat <math>\neg</math> and <math>(\phi \to \bot)</math> as equivalents.</ref> This article focuses on the first approach. === Gentzen-style definition === A syntax definition can also be given using {{section link||Gentzen's tree notation}}, by writing well-formed formulas below the inference line and any schematic variables used by those formulas above it.{{sfn|Ayala-Rincón|de Moura|2017|pages=2,20}} For instance, the equivalent of rules 3 and 4, from Bostock's definition above, is written as follows: :<math>\frac{\varphi}{(\neg \varphi)} \quad \frac{\varphi \quad \psi}{(\varphi \lor \psi)} \quad \frac{\varphi \quad \psi}{(\varphi \land \psi)} \quad \frac{\varphi \quad \psi}{(\varphi \rightarrow \psi)} \quad \frac{\varphi \quad \psi}{(\varphi \leftrightarrow \psi)}</math>. A different notational convention sees the language's syntax as a [[categorial grammar]] with the single category "formula", denoted by the symbol <math>\mathcal{F}</math>. So any elements of the syntax are introduced by categorizations, for which the notation is <math>\varphi : \mathcal{F}</math>, meaning "<math>\varphi</math> is an expression for an object in the category <math>\mathcal{F}</math>."{{sfn|von Plato|2013|pages=12–13}} The sentence-letters, then, are introduced by categorizations such as <math>P : \mathcal{F}</math>, <math>Q : \mathcal{F}</math>, <math>R : \mathcal{F}</math>, and so on;{{sfn|von Plato|2013|pages=12–13}} the connectives, in turn, are defined by statements similar to the above, but using categorization notation, as seen below: {| class="wikitable" |+ '''Connectives defined through a categorial grammar{{sfn|von Plato|2013|pages=12–13}}''' |- ! style="text-align: center;" | '''Conjunction (&)''' ! style="text-align: center;" | '''Disjunction (∨)''' ! style="text-align: center;" | '''Implication (→)''' ! style="text-align: center;" | '''Negation (¬)''' |- | <math>\frac{A : \mathcal{F} \quad B : \mathcal{F}}{\&(A)(B) : \mathcal{F}}</math> | <math>\frac{A : \mathcal{F} \quad B : \mathcal{F}}{\vee(A)(B) : \mathcal{F}}</math> | <math>\frac{A : \mathcal{F} \quad B : \mathcal{F}}{\supset(A)(B) : \mathcal{F}}</math> | <math>\frac{A : \mathcal{F}}{\neg(A) : \mathcal{F}}</math> |} In the rest of this article, the <math>\varphi : \mathcal{F}</math> categorization notation will be used for any Gentzen-notation statements defining the language's grammar; any other statements in Gentzen notation will be inferences, asserting that a sequent follows rather than that an expression is a well-formed formula.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Natural deduction
(section)
Add topic