Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Model organism
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Important model organisms== {{see also | List of model organisms}} Model organisms are drawn from all three [[Domain (biology)|domains]] of life, as well as [[virus]]es. The most widely studied [[prokaryote|prokaryotic]] model organism is ''[[Escherichia coli]]'' (''E. coli''), which has been intensively investigated for over 60 years. It is a common, [[Gram-negative bacteria|gram-negative]] gut bacterium which can be grown and cultured easily and inexpensively in a laboratory setting. It is the most widely used organism in [[molecular genetics]], and is an important species in the fields of [[biotechnology]] and [[microbiology]], where it has served as the [[host organism]] for the majority of work with [[recombinant DNA]].<ref>{{cite web | title=Bacteria | url=http://www.microbiologyonline.org.uk/about-microbiology/introducing-microbes/bacteria | publisher=Microbiologyonline | access-date=27 February 2014 | archive-date=27 February 2014 | archive-url=https://web.archive.org/web/20140227212658/http://www.microbiologyonline.org.uk/about-microbiology/introducing-microbes/bacteria | url-status=dead }}</ref> Simple model [[eukaryote]]s include baker's yeast (''[[Saccharomyces cerevisiae]]'') and fission yeast (''[[Schizosaccharomyces pombe]]''), both of which share many characters with higher cells, including those of humans. For instance, many [[cell division]] genes that are critical for the development of [[cancer]] have been discovered in yeast. ''[[Chlamydomonas reinhardtii]]'', a unicellular [[green alga]] with well-studied genetics, is used to study [[photosynthesis]] and [[motility]]. ''C. reinhardtii'' has many known and mapped mutants and expressed sequence tags, and there are advanced methods for genetic transformation and selection of genes.<ref>{{Cite web |url=http://genome.jgi-psf.org/chlamy |title=Chlamydomonas reinhardtii resources at the Joint Genome Institute |access-date=2007-10-23 |archive-url=https://web.archive.org/web/20080723150730/http://genome.jgi-psf.org/chlamy/ |archive-date=2008-07-23 |url-status=dead }}</ref> ''[[Dictyostelium discoideum]]'' is used in [[molecular biology]] and [[genetics]], and is studied as an example of [[cell communication]], [[Cellular differentiation|differentiation]], and [[programmed cell death]]. [[File:Lightmatter lab mice.jpg|thumb|[[Laboratory mouse|Laboratory mice]], widely used in medical research]] Among invertebrates, the [[Drosophilidae|fruit fly]] ''[[Drosophila melanogaster]]'' is famous as the subject of genetics experiments by [[Thomas Hunt Morgan]] and others. They are easily raised in the lab, with rapid generations, high [[fecundity]], few [[chromosome]]s, and easily induced observable mutations.<ref name="Encyclopedia of genetics">{{cite encyclopedia | author=James H. Sang | editor=Eric C. R. Reeve | encyclopedia=Encyclopedia of genetics | title=Drosophila melanogaster: The Fruit Fly | url=https://books.google.com/books?id=JjLWYKqehRsC&q=drosophila+eggs+day+lifetime&pg=PA157 | access-date=2009-07-01 | date=2001 | publisher=Fitzroy Dearborn Publishers, I | location=USA | page=157 | isbn=978-1-884964-34-3 }}</ref> The [[nematode]] ''[[Caenorhabditis elegans]]'' is used for understanding the genetic control of development and physiology. It was first proposed as a model for neuronal development by [[Sydney Brenner]] in 1963, and has been extensively used in many different contexts since then.<ref>{{cite book | author=Riddle, Donald L. | title=C. elegans II | publisher=Cold Spring Harbor Laboratory Press | location=Plainview, N.Y | year=1997 | isbn=978-0-87969-532-3 | url=https://www.ncbi.nlm.nih.gov/books/bv.fcgi?call=bv.View..ShowTOC&rid=ce2.TOC }}</ref><ref>{{cite journal | last=Brenner | first=S | year=1974 | title=The Genetics of ''Caenorhabditis elegans'' | journal=[[Genetics (journal)|Genetics]] | volume=77 | issue=1 | pages=71–94 | doi=10.1093/genetics/77.1.71 | pmc=1213120 | pmid=4366476}}</ref> ''C. elegans'' was the first multicellular organism whose genome was completely sequenced, and as of 2012, the only organism to have its [[connectome]] (neuronal "wiring diagram") completed.<ref>{{cite journal | last1=White | first1=J | year=1986 | title=The structure of the nervous system of the nematode Caenorhabditis elegans | journal=Philos. Trans. R. Soc. Lond. B Biol. Sci. | volume=314 | issue=1165 | pages=1–340 | pmid=22462104 | doi=10.1098/rstb.1986.0056|display-authors=etal| bibcode=1986RSPTB.314....1W | doi-access=free }}</ref><ref>{{cite magazine | last=Jabr | first=Ferris | date=2012-10-02 | title=The Connectome Debate: Is Mapping the Mind of a Worm Worth It? | url=http://www.scientificamerican.com/article.cfm?id=c-elegans-connectome | magazine=Scientific American | access-date=2014-01-18 }}</ref> ''[[Arabidopsis thaliana]]'' is currently the most popular model plant. Its small stature and short generation time facilitates rapid genetic studies,<ref name="TAIR">[http://www.arabidopsis.org/portals/education/aboutarabidopsis.jsp#hist About Arabidopsis on The Arabidopsis Information Resource page] ([[The Arabidopsis Information Resource|TAIR]])</ref> and many phenotypic and biochemical mutants have been mapped.<ref name="TAIR" /> ''A. thaliana'' was the first plant to have its [[genome]] [[DNA sequencing|sequenced]].<ref name="TAIR" /> Among [[vertebrate]]s, [[guinea pig]]s (''Cavia porcellus'') were used by [[Robert Koch]] and other early bacteriologists as a host for bacterial infections, becoming a byword for "laboratory animal", but are less commonly used today. The classic model vertebrate is currently the mouse (''[[House mouse|Mus musculus]]''). Many inbred strains exist, as well as lines selected for particular traits, often of medical interest, e.g. body size, obesity, muscularity, and voluntary [[wheel-running]] behavior.<ref>{{cite journal | last1 = Kolb | first1 = E. M. | last2 = Rezende | first2 = E. L. | last3 = Holness | first3 = L. | last4 = Radtke | first4 = A. | last5 = Lee | first5 = S. K. | last6 = Obenaus | first6 = A. | last7 = Garland Jr | first7 = T. | year = 2013 | title = Mice selectively bred for high voluntary wheel running have larger midbrains: support for the mosaic model of brain evolution | journal = [[Journal of Experimental Biology]] | volume = 216 | issue = 3| pages = 515–523 | doi=10.1242/jeb.076000| pmid = 23325861 | title-link = midbrain | doi-access = free | bibcode = 2013JExpB.216..515K }}</ref> The rat (''[[Rattus norvegicus]]'') is particularly useful as a toxicology model, and as a neurological model and source of primary cell cultures, owing to the larger size of organs and suborganellar structures relative to the mouse, while eggs and embryos from ''[[Xenopus tropicalis]]'' and ''[[Xenopus laevis]]'' (African clawed frog) are used in developmental biology, cell biology, toxicology, and neuroscience.<ref name="wallingford">{{cite journal |last1=Wallingford |first1=John B. |last2=Liu |first2=Karen J. |last3=Zheng |first3=Yixian |title=Xenopus |journal=Current Biology |date=March 2010 |volume=20 |issue=6 |pages=R263–R264 |doi=10.1016/j.cub.2010.01.012 |pmid=20334828 |bibcode=2010CBio...20.R263W }}</ref><ref name="Harland">{{cite journal | last1=Harland | first1=R.M. | last2=Grainger | first2=R.M. | year=2011 | title=MISSING | journal=Trends in Genetics | volume=27 | issue= 12| pages=507–15 | doi=10.1016/j.tig.2011.08.003 | pmid=21963197 | pmc=3601910}}</ref> Likewise, the [[zebrafish]] (''Danio rerio'') has a nearly transparent body during early development, which provides unique visual access to the animal's internal anatomy during this time period. Zebrafish are used to study development, toxicology and toxicopathology,<ref>{{cite journal |vauthors=Spitsbergen JM, Kent ML | title=The state of the art of the zebrafish model for toxicology and toxicologic pathology research—advantages and current limitations | journal=Toxicol Pathol | volume=31 | issue=Suppl | pages=62–87 | year=2003 | pmid=12597434 | pmc=1909756 | doi=10.1080/01926230390174959}}</ref> specific gene function and roles of signaling pathways. Other important model organisms and some of their uses include: [[T4 phage]] (viral infection), ''[[Tetrahymena thermophila]]'' (intracellular processes), [[maize]] ([[transposon]]s), ''[[Hydra (genus)|hydra]]s'' ([[Regeneration (biology)|regeneration]] and [[morphogenesis]]),<ref>{{Cite journal | last1 = Chapman | first1 = J. A. | last2 = Kirkness | first2 = E. F. | last3 = Simakov | first3 = O. | last4 = Hampson | first4 = S. E. | last5 = Mitros | first5 = T. | last6 = Weinmaier | first6 = T. | last7 = Rattei | first7 = T. | last8 = Balasubramanian | first8 = P. G. | last9 = Borman | first9 = J. | last10 = Busam | first10 = D. | last11 = Disbennett | first11 = K. | last12 = Pfannkoch | first12 = C. | last13 = Sumin | first13 = N. | last14 = Sutton | first14 = G. G. | last15 = Viswanathan | first15 = L. D. | last16 = Walenz | first16 = B. | last17 = Goodstein | first17 = D. M. | last18 = Hellsten | first18 = U. | last19 = Kawashima | first19 = T. | last20 = Prochnik | first20 = S. E. | last21 = Putnam | first21 = N. H. | last22 = Shu | first22 = S. | last23 = Blumberg | first23 = B. | last24 = Dana | first24 = C. E. | last25 = Gee | first25 = L. | last26 = Kibler | first26 = D. F. | last27 = Law | first27 = L. | last28 = Lindgens | first28 = D. | last29 = Martinez | first29 = D. E. | last30 = Peng | first30 = J. | title = The dynamic genome of Hydra | journal = Nature | volume = 464 | issue = 7288 | pages = 592–596 | year = 2010 | pmid = 20228792 | doi = 10.1038/nature08830 |bibcode = 2010Natur.464..592C | display-authors = 29 | pmc = 4479502}}</ref> [[cat]]s (neurophysiology), [[chicken]]s (development), [[dog]]s (respiratory and cardiovascular systems), ''[[turquoise killifish|Nothobranchius furzeri]]'' (aging),<ref>{{Cite journal | doi = 10.1016/j.cell.2015.01.038| pmid = 25684364| title = A Platform for Rapid Exploration of Aging and Diseases in a Naturally Short-Lived Vertebrate| journal = Cell| volume = 160| issue = 5| pages = 1013–26| year = 2015| last1 = Harel | first1 = I. | last2 = Benayoun | first2 = B. R. N. A. | last3 = Machado | first3 = B. | last4 = Singh | first4 = P. P. | last5 = Hu | first5 = C. K. | last6 = Pech | first6 = M. F. | last7 = Valenzano | first7 = D. R. | last8 = Zhang | first8 = E. | last9 = Sharp | first9 = S. C. | last10 = Artandi | first10 = S. E. | last11 = Brunet | first11 = A. | pmc=4344913}}</ref> non-human primates such as the [[rhesus macaque]] and [[Common chimpanzee|chimpanzee]] ([[hepatitis]], [[HIV]], [[Parkinson's disease]], [[cognition]], and [[vaccine]]s), and [[ferret]]s ([[SARS-CoV-2]])<ref>{{Cite journal |last1=Kim |first1=Young-Il |last2=Kim |first2=Seong-Gyu |last3=Kim |first3=Se-Mi |last4=Kim |first4=Eun-Ha |last5=Park |first5=Su-Jin |last6=Yu |first6=Kwang-Min |last7=Chang |first7=Jae-Hyung |last8=Kim |first8=Eun Ji |last9=Lee |first9=Seunghun |last10=Casel |first10=Mark Anthony B. |last11=Um |first11=Jihye |last12=Song |first12=Min-Suk |last13=Jeong |first13=Hye Won |last14=Lai |first14=Van Dam |last15=Kim |first15=Yeonjae |date=2020-05-13 |title=Infection and Rapid Transmission of SARS-CoV-2 in Ferrets |journal=Cell Host & Microbe |volume=27 |issue=5 |pages=704–709.e2 |doi=10.1016/j.chom.2020.03.023 |issn=1931-3128 |pmc=7144857 |pmid=32259477}}</ref> ===Selected model organisms=== The organisms below have become model organisms because they facilitate the study of certain characters or because of their genetic accessibility. For example, [[Escherichia coli|''E. coli'']] was one of the first organisms for which genetic techniques such as [[Transformation (genetics)|transformation]] or [[Genetic engineering|genetic manipulation]] has been developed.{{cn|date=March 2025}} The [[genome]]s of all model species have been [[genome sequencing project|sequenced]], including their [[mitochondria]]l/[[chloroplast]] genomes. [[Model organism databases]] exist to provide researchers with a portal from which to download sequences (DNA, RNA, or protein) or to access functional information on specific genes, for example the sub-cellular localization of the gene product or its physiological role.{{cn|date=March 2025}} {| class="wikitable" |- ! ! Model Organism ! Common name ! Informal classification ! Usage (examples) |- | style="background:#ffdead;" | Virus |[[Phi X 174]] |ΦX174 | [[Virus]] |evolution<ref>{{cite journal |last1=Wichman |first1=Holly A. |last2=Brown |first2=Celeste J. |title=Experimental evolution of viruses: Microviridae as a model system |journal=Philosophical Transactions of the Royal Society B: Biological Sciences |date=2010-08-27 |volume=365 |issue=1552 |pages=2495–2501 |doi=10.1098/rstb.2010.0053 |pmid=20643739 |pmc=2935103 }}</ref> |- | rowspan="2" style="background:#ffdead;" | Prokaryotes | ''[[Escherichia coli]]'' |''E. coli'' | [[Bacteria]] |bacterial genetics, metabolism |- | ''[[Pseudomonas fluorescens]]'' |''P. fluorescens'' | [[Bacteria]] |evolution, adaptive radiation<ref>{{cite journal |last1=Kassen |first1=Rees |title=Toward a General Theory of Adaptive Radiation |journal=Annals of the New York Academy of Sciences |date=2009-06-24 |volume=1168 |issue=1 |pages=3–22 |doi=10.1111/j.1749-6632.2009.04574.x |pmid=19566701 |bibcode=2009NYASA1168....3K }}</ref> |- | rowspan="6" style="background:#ffdead;" | Eukaryotes, unicellular | ''[[Dictyostelium discoideum]]'' | | [[Amoeba]] | immunology, host–pathogen interactions<ref>{{cite journal |last1=Dunn |first1=Joe Dan |last2=Bosmani |first2=Cristina |last3=Barisch |first3=Caroline |last4=Raykov |first4=Lyudmil |last5=Lefrançois |first5=Louise H. |last6=Cardenal-Muñoz |first6=Elena |last7=López-Jiménez |first7=Ana Teresa |last8=Soldati |first8=Thierry |title=Eat Prey, Live: Dictyostelium discoideum As a Model for Cell-Autonomous Defenses |journal=Frontiers in Immunology |date=2018-01-04 |volume=8 |pages=1906 |doi=10.3389/fimmu.2017.01906 |pmid=29354124 |pmc=5758549 |doi-access=free }}</ref> |- | ''[[Saccharomyces cerevisiae]]'' | Brewer's yeast<br>Baker's yeast | [[Yeast]] |cell division, organelles, etc. |- | ''[[Schizosaccharomyces pombe]]'' | Fission yeast | [[Yeast]] | cell cycle, cytokinesis, chromosome biology, telomeres, DNA metabolism, cytoskeleton organization, industrial applications<ref>[http://www.pombase.org/browse-curation/fypo-slim Fission Yeast GO slim terms | PomBase<!-- Bot generated title -->]</ref><ref name="pmid38376816">{{cite journal | vauthors = Rutherford KM, Lera-Ramírez M, Wood V | title = PomBase: a Global Core Biodata Resource-growth, collaboration, and sustainability | journal = Genetics | volume = 227 | issue = 1 | date = 7 May 2024 | pmid = 38376816 | pmc = 11075564 | doi = 10.1093/genetics/iyae007 }}</ref> |- | ''[[Chlamydomonas reinhardtii]]'' | | [[Algae]] |hydrogen production<ref>{{cite journal |last1=Batyrova |first1=Khorcheska |last2=Hallenbeck |first2=Patrick C. |title=Hydrogen Production by a Chlamydomonas reinhardtii Strain with Inducible Expression of Photosystem II |journal=International Journal of Molecular Sciences |date=2017-03-16 |volume=18 |issue=3 |page=647 |doi=10.3390/ijms18030647 |pmid=28300765 |pmc=5372659 |doi-access=free }}</ref> |- | ''[[Tetrahymena thermophila]]'', ''[[Tetrahymena pyriformis|T. pyriformis]]'' | | [[Ciliate]] |education,<ref>{{cite book |doi=10.1016/B978-0-12-385967-9.00016-5 |pmc=3587665 |chapter=Tetrahymena in the Classroom |title=Tetrahymena Thermophila |series=Methods in Cell Biology |year=2012 |last1=Smith |first1=Joshua J. |last2=Wiley |first2=Emily A. |last3=Cassidy-Hanley |first3=Donna M. |volume=109 |pages=411–430 |pmid=22444155 |isbn=9780123859679 }}</ref> biomedical research<ref>{{cite book |last1=Stefanidou |first1=Maria |chapter=The use of the protozoan Tetrahymena as a cell model |pages=69–88 |editor1-last=Castillo |editor1-first=Victor |editor2-last=Harris |editor2-first=Rodney |title=Protozoa: Biology, Classification and Role in Disease |date=2014 |publisher=Nova Science Publishers |isbn=978-1-62417-073-7 }}</ref> |- | ''[[Emiliania huxleyi]]'' | | [[Plankton]] |surface sea temperature<ref>{{cite journal |last1=Fielding |first1=Samuel R. |title=Emiliania huxleyi specific growth rate dependence on temperature |journal=Limnology and Oceanography |date=March 2013 |volume=58 |issue=2 |pages=663–666 |doi=10.4319/lo.2013.58.2.0663 |bibcode=2013LimOc..58..663F |doi-access=free }}</ref> |- | rowspan="3" style="background:#ffdead;" | Plants | ''[[Arabidopsis thaliana]]'' | Thale cress | [[Flowering plant]] |population genetics<ref>{{cite journal |last1=Platt |first1=Alexander |last2=Horton |first2=Matthew |last3=Huang |first3=Yu S. |last4=Li |first4=Yan |last5=Anastasio |first5=Alison E. |last6=Mulyati |first6=Ni Wayan |last7=Ågren |first7=Jon |last8=Bossdorf |first8=Oliver |last9=Byers |first9=Diane |last10=Donohue |first10=Kathleen |last11=Dunning |first11=Megan |last12=Holub |first12=Eric B. |last13=Hudson |first13=Andrew |last14=Le Corre |first14=Valérie |last15=Loudet |first15=Olivier |last16=Roux |first16=Fabrice |last17=Warthmann |first17=Norman |last18=Weigel |first18=Detlef |last19=Rivero |first19=Luz |last20=Scholl |first20=Randy |last21=Nordborg |first21=Magnus |last22=Bergelson |first22=Joy |author-link22=Joy Bergelson|last23=Borevitz |first23=Justin O. |title=The Scale of Population Structure in Arabidopsis thaliana |journal=PLOS Genetics |date=2010-02-12 |volume=6 |issue=2 |pages=e1000843 |doi=10.1371/journal.pgen.1000843 |pmid=20169178 |pmc=2820523 |doi-access=free }}</ref> |- | ''[[Physcomitrella patens]]'' | Spreading earthmoss | [[Moss]] | molecular farming<ref>{{cite journal |last1=Bohlender |first1=Lennard L. |last2=Parsons |first2=Juliana |last3=Hoernstein |first3=Sebastian N. W. |last4=Rempfer |first4=Christine |last5=Ruiz-Molina |first5=Natalia |last6=Lorenz |first6=Timo |last7=Rodríguez Jahnke |first7=Fernando |last8=Figl |first8=Rudolf |last9=Fode |first9=Benjamin |last10=Altmann |first10=Friedrich |last11=Reski |first11=Ralf |last12=Decker |first12=Eva L. |title=Stable Protein Sialylation in Physcomitrella |journal=Frontiers in Plant Science |date=2020-12-18 |volume=11 |pages=610032 |doi=10.3389/fpls.2020.610032 |pmid=33391325 |pmc=7775405 |doi-access=free }}</ref> |- | ''[[Populus trichocarpa#Use as a model organism|Populus trichocarpa]]'' | Balsam poplar | [[Tree]] |drought tolerance, lignin biosynthesis, wood formation, plant biology, morphology, genetics, and ecology<ref>{{cite journal| url = https://academic.oup.com/treephys/article/33/4/357/1716508| title = Revisiting the sequencing of the first tree genome: Populus trichocarpa {{!}} Tree Physiology {{!}} Oxford Academic| journal = Tree Physiology| date = April 2013| volume = 33| issue = 4| pages = 357–364| doi = 10.1093/treephys/tps081| last1 = Wullschleger| first1 = Stan D.| last2 = Weston| first2 = D. J.| last3 = Difazio| first3 = S. P.| last4 = Tuskan| first4 = G. A.| pmid = 23100257}}</ref> |- | rowspan="3" style="background:#ffdead;" | Animals, nonvertebrate | ''[[Caenorhabditis elegans]]'' |Nematode, Roundworm | [[Worm]] |differentiation, development |- | ''[[Drosophila melanogaster]]'' | Fruit fly | [[Insect]] |developmental biology, human brain degenerative disease<ref>{{cite journal| journal=Science Express|first1=Susan L.|last1=Lindquist|first2=Nancy M.|last2=Bonini|url=https://www.hhmi.org/news/parkinsons-disease-mechanism-discovered |title=Parkinson's Disease Mechanism Discovered |date=22 Jun 2006 |publisher=Howard Hughes Medical Institute |access-date=11 Jul 2019 }}</ref><ref>{{cite journal |last1= Kim|first1=H|last2=Raphayel |first2=A |last3=LaDow |first3=E |last4= McGurk|first4=L |last5= Weber|first5=R|last6= Trojanowski|first6=J|last7= Lee|first7=V|last8= Finkbeiner|first8=S |last9= Gitler|first9=A |last10= Bonini|first10=N |date=2014 |title=Therapeutic modulation of eIF2α-phosphorylation rescues TDP-43 toxicity in amyotrophic lateral sclerosis disease models |journal= [[Nature Genetics]]|volume=46 |issue= 2|pages= 152–60|doi= 10.1038/ng.2853|pmc= 3934366|pmid= 24336168}}</ref> |- | ''[[Callosobruchus maculatus]]'' | Cowpea Weevil | [[Insect]] |developmental biology |- | rowspan="9" style="background:#ffdead;" | Animals, vertebrate | ''[[Danio rerio]]'' | Zebrafish | [[Fish]] |embryonic development |- | ''[[Mummichog|Fundulus heteroclitus]]'' | Mummichog | [[Fish]] | [[Behavioral endocrinology|effect of hormones on behavior]] |- | ''[[Nothobranchius furzeri]]'' | Turquoise killifish | [[Fish]] |aging, disease, evolution |- | ''[[Japanese rice fish|Oryzias latipes]]'' | Japanese rice fish | [[Fish]] |fish biology, sex determination<ref>{{cite book |doi=10.1016/B978-0-12-809633-8.03245-3 |chapter=Molecular and Chromosomal Aspects of Sex Determination |title=Reference Module in Life Sciences |year=2017 |last1=Siegfried |first1=K.R. |isbn=978-0-12-809633-8 }} </ref> |- | ''[[Anolis carolinensis]]'' | Carolina anole | [[Reptile]] |reptile biology, evolution |- | ''[[Mus musculus]]'' | House mouse | [[Mammal]] |disease model for humans |- | ''[[Gallus gallus]]'' | Red junglefowl | [[Bird]] |embryological development and organogenesis |- | ''[[Australian zebra finch|Taeniopygia castanotis]]'' | Australian zebra finch | [[Bird]] | vocal learning, neurobiology<ref>{{cite journal |last1=Mello|first1=Claudio V. |date=2014 |title= The Zebra Finch, Taeniopygia guttata: An Avian Model for Investigating the Neurobiological Basis of Vocal Learning |journal= [[Cold Spring Harbor Protocols]]|volume=2014 |issue=12 |pages= 1237–1242|doi= 10.1101/pdb.emo084574|pmc= 4571486|pmid= 25342070}}</ref> |- | ''[[Xenopus laevis]]''<br>''[[Western clawed frog|Xenopus tropicalis]]''<ref>{{cite news|url=http://www.genomeweb.com//node/939634?hq_e=el&hq_m=701632&hq_l=1&hq_v=2de76155bb |title=JGI-Led Team Sequences Frog Genome |date=29 April 2010 |access-date=30 April 2010 |publisher=Genome Web |work=GenomeWeb.com |url-status=dead |archive-url=https://web.archive.org/web/20110807211657/http://www.genomeweb.com//node/939634?hq_e=el&hq_m=701632&hq_l=1&hq_v=2de76155bb |archive-date=August 7, 2011 }}</ref> | African clawed frog<br>Western clawed frog | [[Amphibian]] |embryonic development |}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Model organism
(section)
Add topic