Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Miocene
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Climate== [[File:65 Myr Climate Change.png|thumb|300px]] Climates remained moderately warm, although the slow global cooling that eventually led to the [[Pleistocene]] [[glaciation]]s continued. Although a long-term cooling trend was well underway, there is evidence of a warm period during the Miocene when the global climate rivalled that of the [[Oligocene]].{{citation needed|date=March 2023}} The climate of the Miocene has been suggested as a good analogue for future warmer climates caused by [[anthropogenic global warming]],<ref name="ReconstructingTerrestrialPalaeoclimates" /> with this being especially true of the global climate during the [[Middle Miocene Climatic Optimum]] (MMCO),<ref name="TheFutureOfThePast" /><ref>{{cite journal |last1=Methner |first1=Katharina |last2=Campani |first2=Marion |last3=Fiebig |first3=Jens |last4=Löffler |first4=Niklas |last5=Kempf |first5=Oliver |last6=Mulch |first6=Andreas |date=14 May 2020 |title=Middle Miocene long-term continental temperature change in and out of pace with marine climate records |journal=[[Scientific Reports]] |volume=10 |issue=1 |page=7989 |doi=10.1038/s41598-020-64743-5 |pmid=32409728 |pmc=7224295 |bibcode=2020NatSR..10.7989M }}</ref><ref>{{Cite journal |last=You |first=Y. |date=17 February 2010 |title=Climate-model evaluation of the contribution of sea-surface temperature and carbon dioxide to the Middle Miocene Climate Optimum as a possible analogue of future climate change |url=http://www.tandfonline.com/doi/abs/10.1080/08120090903521671 |journal=[[Australian Journal of Earth Sciences]] |language=en |volume=57 |issue=2 |pages=207–219 |doi=10.1080/08120090903521671 |bibcode=2010AuJES..57..207Y |s2cid=129238665 |issn=0812-0099 |access-date=4 September 2023}}</ref> because the last time carbon dioxide levels were comparable to projected future atmospheric carbon dioxide levels resulting from anthropogenic [[climate change]] was during the MMCO.<ref name="DeepTimePerspectiveCO2">{{cite journal |last1=Retallack |first1=Gregory J. |last2=Conde |first2=Giselle D. |date=June 2020 |title=Deep time perspective on rising atmospheric CO2 |url=https://www.sciencedirect.com/science/article/abs/pii/S0921818120300680 |journal=[[Global and Planetary Change]] |volume=189 |page=103177 |doi=10.1016/j.gloplacha.2020.103177 |bibcode=2020GPC...18903177R |s2cid=216307251 |access-date=5 June 2023}}</ref> The Ross Sea margin of the East Antarctic Ice Sheet (EAIS) was highly dynamic during the Early Miocene.<ref>{{Cite journal |last1=Smellie |first1=J.L. |last2=Panter |first2=K.S. |last3=McIntosh |first3=W.C. |last4=Licht |first4=K.J. |date=July 2024 |title=Landscape evolution in the southern Transantarctic Mountains during the early Miocene (c. 20–17 Ma) and evidence for a highly dynamic East Antarctic Ice Sheet margin from the southernmost volcanoes in the world (87°S) |url=https://www.sciencedirect.com/science/article/pii/S0921818124001127 |journal=[[Global and Planetary Change]] |language=en |volume=238 |pages=104465 |doi=10.1016/j.gloplacha.2024.104465 |bibcode=2024GPC...23804465S |access-date=1 November 2024 |via=Elsevier Science Direct}}</ref> The Miocene began with the Early Miocene Cool Event (Mi-1) around 23 million years ago, which marked the start of the Early Miocene Cool Interval (EMCI).<ref name="ChristopherScotese" /> This cool event occurred immediately after the Oligocene-Miocene Transition (OMT) during a major expansion of Antarctica's ice sheets,<ref>{{cite journal |last1=Greenop |first1=Rosanna |last2=Sodian |first2=Sindia M. |last3=Henehan |first3=Michael J. |last4=Wilson |first4=Paul A. |last5=Lear |first5=Caroline H. |last6=Foster |first6=Gavin L. |date=18 January 2019 |title=Orbital Forcing, Ice Volume, and CO2 Across the Oligocene-Miocene Transition |url=https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018PA003420 |journal=[[Paleoceanography and Paleoclimatology]] |volume=34 |issue=3 |pages=316–328 |doi=10.1029/2018PA003420 |bibcode=2019PaPa...34..316G |s2cid=133785754 |access-date=5 April 2023}}</ref> but was not associated with a significant drop in atmospheric carbon dioxide levels.<ref>{{cite journal |last1=Roth-Nebelsick |first1=A. |last2=Utescher |first2=T. |last3=Mosbrugger |first3=V. |last4=Diester-Haass |first4=L. |last5=Walther |first5=T. |date=20 March 2004 |title=Changes in atmospheric CO2 concentrations and climate from the Late Eocene to Early Miocene: palaeobotanical reconstruction based on fossil floras from Saxony, Germany |url=https://www.sciencedirect.com/science/article/abs/pii/S0031018203007545 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=205 |issue=1–2 |pages=43–67 |doi=10.1016/j.palaeo.2003.11.014 |bibcode=2004PPP...205...43R |access-date=20 July 2023}}</ref> Both continental and oceanic thermal gradients in mid-latitudes during the Early Miocene were very similar to those in the present.<ref name="GoedertEtAl2017">{{cite journal |last1=Goedert |first1=Jean |last2=Amiot |first2=Romain |last3=Arnaut-Godet |first3=Florent |last4=Cuny |first4=Gilles |last5=Fourel |first5=François |last6=Hernandez |first6=Jean-Alexis |last7=Pedreira-Segade |first7=Ulysse |last8=Lécuyer |first8=Christophe |date=1 September 2017 |title=Miocene (Burdigalian) seawater and air temperatures estimated from the geochemistry of fossil remains from the Aquitaine Basin, France |url=https://www.sciencedirect.com/science/article/abs/pii/S0031018216307568 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=481 |pages=14–28 |doi=10.1016/j.palaeo.2017.04.024 |bibcode=2017PPP...481...14G |access-date=30 November 2022}}</ref> Global cooling caused the East Asian Summer Monsoon (EASM) to begin to take on its modern form during the Early Miocene.<ref>{{Cite journal |last1=Zhang |first1=Ran |last2=Zhang |first2=Zhongshi |last3=Jiang |first3=Dabang |date=23 October 2018 |title=Global Cooling Contributed to the Establishment of a Modern-Like East Asian Monsoon Climate by the Early Miocene |url=http://doi.wiley.com/10.1029/2018GL079930 |journal=[[Geophysical Research Letters]] |language=en |volume=45 |issue=21 |pages=11,941–11,948 |doi=10.1029/2018GL079930 |bibcode=2018GeoRL..4511941Z |s2cid=135353513 |access-date=4 September 2023}}</ref> From 22.1 to 19.7 Ma, the Xining Basin experienced relative warmth and humidity amidst a broader aridification trend.<ref>{{Cite journal |last1=Zhang |first1=Chunxia |last2=Xiao |first2=Guoqiao |last3=Guo |first3=Zhengtang |last4=Wu |first4=Haibin |last5=Hao |first5=Qingzhen |date=1 May 2015 |title=Evidence of late early Miocene aridification intensification in the Xining Basin caused by the northeastern Tibetan Plateau uplift |url=https://www.sciencedirect.com/science/article/pii/S0921818115000405 |journal=[[Global and Planetary Change]] |volume=128 |pages=31–46 |doi=10.1016/j.gloplacha.2015.02.002 |bibcode=2015GPC...128...31Z |issn=0921-8181 |access-date=12 January 2024 |via=Elsevier Science Direct}}</ref> The EMCI ended 18 million years ago, giving way to the Middle Miocene Warm Interval (MMWI), the warmest part of which was the MMCO that began 16 million years ago.<ref name="ChristopherScotese">{{Cite journal |last1=Scotese |first1=Christopher R. |last2=Song |first2=Haijun |last3=Mills |first3=Benjamin J.W. |last4=van der Meer |first4=Douwe G. |date=April 2021 |title=Phanerozoic paleotemperatures: The earth's changing climate during the last 540 million years |journal=[[Earth-Science Reviews]] |volume=215 |page=103503 |bibcode=2021ESRv..21503503S |doi=10.1016/j.earscirev.2021.103503 |issn=0012-8252 |s2cid=233579194|url=https://eprints.whiterose.ac.uk/169823/1/Scotese_etal_phan_temp_AAM.pdf }} [https://eprints.whiterose.ac.uk/169823/ Alt URL]</ref> As the world transitioned into the MMCO, carbon dioxide concentrations varied between 300 and 500 ppm.<ref>{{cite journal |last1=Greenop |first1=Rosanna |last2=Foster |first2=Gavin L. |last3=Wilson |first3=Paul A. |last4=Lear |first4=Caroline H. |date=11 August 2014 |title=Middle Miocene climate instability associated with high-amplitude CO2 variability |url=https://agupubs.onlinelibrary.wiley.com/doi/10.1002/2014PA002653 |journal=[[Paleoceanography and Paleoclimatology]] |volume=29 |issue=9 |pages=845–853 |doi=10.1002/2014PA002653 |bibcode=2014PalOc..29..845G |s2cid=129813700 |access-date=5 April 2023}}</ref> Global annual mean surface temperature during the MMCO was about 18.4 °C.<ref>{{Cite journal |last1=You |first1=Y. |last2=Huber |first2=M. |last3=Müller |first3=R. D. |last4=Poulsen |first4=C. J. |last5=Ribbe |first5=J. |date=19 February 2009 |title=Simulation of the Middle Miocene Climate Optimum |url=http://doi.wiley.com/10.1029/2008GL036571 |journal=[[Geophysical Research Letters]] |language=en |volume=36 |issue=4 |pages=1–5 |doi=10.1029/2008GL036571 |bibcode=2009GeoRL..36.4702Y |s2cid=17326204 |issn=0094-8276 |access-date=4 September 2023}}</ref> MMCO warmth was driven by the activity of the [[Columbia River Basalt Group|Columbia River Basalts]]<ref>{{cite journal |last1=Armstrong McKay |first1=David I. |last2=Tyrrell |first2=Toby |last3=Wilson |first3=Paul A. |last4=Foster |first4=Gavin L. |date=1 October 2014 |title=Estimating the impact of the cryptic degassing of Large Igneous Provinces: A mid-Miocene case-study |url=https://www.sciencedirect.com/science/article/abs/pii/S0012821X14004257 |journal=[[Earth and Planetary Science Letters]] |volume=403 |pages=254–262 |doi=10.1016/j.epsl.2014.06.040 |bibcode=2014E&PSL.403..254A |access-date=29 April 2023}}</ref><ref>{{Cite journal |last1=Holbourn |first1=Ann |last2=Kuhnt |first2=Wolfgang |last3=Kochhann |first3=Karlos G.D. |last4=Andersen |first4=Nils |last5=Sebastian Meier |first5=K.J. |date=1 February 2015 |title=Global perturbation of the carbon cycle at the onset of the Miocene Climatic Optimum |url=http://pubs.geoscienceworld.org/geology/article/43/2/123/131763/Global-perturbation-of-the-carbon-cycle-at-the |journal=[[Geology (journal)|Geology]] |language=en |volume=43 |issue=2 |pages=123–126 |doi=10.1130/G36317.1 |bibcode=2015Geo....43..123H |issn=1943-2682 |access-date=4 September 2023}}</ref><ref>{{Cite journal |last1=Goto |first1=Kosuke T. |last2=Tejada |first2=Maria Luisa G. |last3=Tajika |first3=Eiichi |last4=Suzuki |first4=Katsuhiko |date=26 January 2023 |title=Enhanced magmatism played a dominant role in triggering the Miocene Climatic Optimum |url=https://www.nature.com/articles/s43247-023-00684-x |journal=[[Communications Earth & Environment]] |language=en |volume=4 |issue=1 |page=21 |doi=10.1038/s43247-023-00684-x |bibcode=2023ComEE...4...21G |issn=2662-4435 |access-date=26 November 2023}}</ref> and enhanced by decreased [[albedo]] from the reduction of deserts and expansion of forests.<ref>{{cite journal |last1=Henrot |first1=A.-J. |last2=François |first2=L. |last3=Favre |first3=E. |last4=Butzin |first4=M. |last5=Ouberdous |first5=M. |last6=Munhoven |first6=G. |date=21 October 2010 |title=Effects of CO2, continental distribution, topography and vegetation changes on the climate at the Middle Miocene: a model study |url=https://cp.copernicus.org/articles/6/675/2010/ |journal=[[Climate of the Past]] |volume=6 |issue=5 |pages=675–694 |doi=10.5194/cp-6-675-2010 |bibcode=2010CliPa...6..675H |access-date=21 April 2023 |doi-access=free }}</ref> [[Climate model]]ling suggests additional, currently unknown, factors also worked to create the warm conditions of the MMCO.<ref>{{Cite journal |last1=Goldner |first1=A. |last2=Herold |first2=N. |last3=Huber |first3=M. |date=13 March 2014 |title=The challenge of simulating the warmth of the mid-Miocene climatic optimum in CESM1 |url=https://cp.copernicus.org/articles/10/523/2014/ |journal=[[Climate of the Past]] |language=en |volume=10 |issue=2 |pages=523–536 |doi=10.5194/cp-10-523-2014 |bibcode=2014CliPa..10..523G |issn=1814-9332 |access-date=4 September 2023 |doi-access=free }}</ref> The MMCO saw the expansion of the tropical climatic zone to much larger than its current size.<ref>{{Cite journal |last=Kroh |first=Andreas |date=14 September 2007 |title=Climate changes in the Early to Middle Miocene of the Central Paratethys and the origin of its echinoderm fauna |url=https://www.sciencedirect.com/science/article/pii/S0031018207002003 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |series=Miocene Climate in Europe - patterns and evolution. First synthesis of NECLIME |volume=253 |issue=1 |pages=169–207 |doi=10.1016/j.palaeo.2007.03.039 |bibcode=2007PPP...253..169K |issn=0031-0182 |access-date=12 October 2023}}</ref> The July ITCZ, the zone of maximal monsoonal rainfall, moved to the north, increasing precipitation over southern China whilst simultaneously decreasing it over Indochina during the EASM.<ref name="LiuEtAl2019">{{cite journal |last1=Liu |first1=Chang |last2=Clift |first2=Peter D. |last3=Giosan |first3=Liviu |last4=Miao |first4=Yunfa |last5=Warny |first5=Sophie |last6=Wan |first6=Shiming |date=1 July 2019 |title=Paleoclimatic evolution of the SW and NE South China Sea and its relationship with spectral reflectance data over various age scales |url=https://www.sciencedirect.com/science/article/abs/pii/S0031018218307302 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=525 |pages=25–43 |doi=10.1016/j.palaeo.2019.02.019 |bibcode=2019PPP...525...25L |s2cid=135413974 |access-date=14 November 2022}}</ref> Western Australia was at this time characterised by exceptional aridity.<ref name="GroeneveldEtAl2017">{{cite journal |last1=Groeneveld |first1=Jeroen |last2=Henderiks |first2=Jorijntje |last3=Renema |first3=Willem |last4=McHugh |first4=Cecilia M. |last5=De Vleeschouwer |first5=David |last6=Christensen |first6=Beth A. |last7=Fulthorpe |first7=Craig S. |last8=Reuning |first8=Lars |last9=Gallager |first9=Stephen J. |last10=Bogus |first10=Kara |last11=Auer |first11=Gerald |last12=Ishiwa |first12=Takeshige |last13=Expedition 356 Scientists |date=10 May 2017 |title=Australian shelf sediments reveal shifts in Miocene Southern Hemisphere westerlies |journal=[[Science Advances]] |volume=3 |issue=5 |pages=e1602567 |doi=10.1126/sciadv.1602567 |pmid=28508066 |pmc=5425240 |bibcode=2017SciA....3E2567G }}</ref> In Antarctica, average summer temperatures on land reached 10 °C.<ref>{{Cite journal |last1=Warny |first1=Sophie |last2=Askin |first2=Rosemary A. |last3=Hannah |first3=Michael J. |last4=Mohr |first4=Barbara A.R. |last5=Raine |first5=J. Ian |last6=Harwood |first6=David M. |last7=Florindo |first7=Fabio |last8=the SMS Science Team |date=1 October 2009 |title=Palynomorphs from a sediment core reveal a sudden remarkably warm Antarctica during the middle Miocene |url=https://pubs.geoscienceworld.org/gsa/geology/article/37/10/955/103994/Palynomorphs-from-a-sediment-core-reveal-a-sudden |journal=[[Geology (journal)|Geology]] |language=en |volume=37 |issue=10 |pages=955–958 |doi=10.1130/G30139A.1 |bibcode=2009Geo....37..955W |issn=1943-2682 |access-date=4 September 2023}}</ref> In the oceans, the [[lysocline]] shoaled by approximately half of a kilometre during warm phases that corresponded to [[orbital eccentricity]] maxima.<ref>{{Cite journal |last1=Kochhann |first1=Karlos G. D. |last2=Holbourn |first2=Ann |last3=Kuhnt |first3=Wolfgang |last4=Channell |first4=James E. T. |last5=Lyle |first5=Mitch |last6=Shackford |first6=Julia K. |last7=Wilkens |first7=Roy H. |last8=Andersen |first8=Nils |date=22 August 2016 |title=Eccentricity pacing of eastern equatorial Pacific carbonate dissolution cycles during the Miocene Climatic Optimum: ECCENTRICITY-PACED DISSOLUTION CYCLES |url=http://doi.wiley.com/10.1002/2016PA002988 |journal=[[Paleoceanography and Paleoclimatology]] |language=en |volume=31 |issue=9 |pages=1176–1192 |doi=10.1002/2016PA002988 |access-date=4 September 2023}}</ref> The MMCO ended around 14 million years ago,<ref name="ChristopherScotese" /> when global temperatures fell in the [[Middle Miocene disruption|Middle Miocene Climate Transition]] (MMCT).<ref>{{Cite journal |last1=Shevenell |first1=Amelia E. |author-link=Amelia E. Shevenell |last2= Kennett |first2=James P. |last3=Lea |first3=David W. |date=17 September 2004 |title=Middle Miocene Southern Ocean Cooling and Antarctic Cryosphere Expansion |journal=[[Science (journal)|Science]] |url=https://www.science.org/doi/10.1126/science.1100061 |language=en |volume=305 |issue=5691 |pages=1766–1770 |doi=10.1126/science.1100061 |issn=0036-8075 |pmid=15375266 |bibcode=2004Sci...305.1766S |s2cid=27369039 |access-date=5 April 2023}}</ref> Abrupt increases in [[opal]] deposition indicate this cooling was driven by enhanced drawdown of carbon dioxide via silicate weathering.<ref>{{Cite journal |last1=Holbourn |first1=A. |last2=Kuhnt |first2=W. |last3=Lyle |first3=M. |last4=Schneider |first4=L. |last5=Romero |first5=O. |last6=Andersen |first6=N. |date=1 January 2014 |title=Middle Miocene climate cooling linked to intensification of eastern equatorial Pacific upwelling |url=https://pubs.geoscienceworld.org/geology/article/42/1/19-22/131310 |journal=[[Geology (journal)|Geology]] |language=en |volume=42 |issue=1 |pages=19–22 |doi=10.1130/G34890.1 |bibcode=2014Geo....42...19H |issn=0091-7613 |access-date=4 September 2023}}</ref> The MMCT caused a [[sea surface temperature]] (SST) drop of approximately 6 °C in the North Atlantic.<ref>{{Cite journal |last1=Super |first1=James R. |last2=Thomas |first2=Ellen |last3=Pagani |first3=Mark |last4=Huber |first4=Matthew |last5=O'Brien |first5=Charlotte |last6=Hull |first6=Pincelli M. |date=26 April 2018 |title=North Atlantic temperature and pCO2 coupling in the early-middle Miocene |url=https://pubs.geoscienceworld.org/gsa/geology/article/46/6/519/530691/North-Atlantic-temperature-and-pCO2-coupling-in |journal=[[Geology (journal)|Geology]] |language=en |volume=46 |issue=6 |pages=519–522 |doi=10.1130/G40228.1 |bibcode=2018Geo....46..519S |issn=0091-7613 |access-date=4 September 2023}}</ref> The drop in benthic foraminiferal δ<sup>18</sup>O values was most noticeable in the waters around Antarctica, suggesting cooling was most intense there.<ref>{{Cite journal |last1=Woodruff |first1=Fay |last2=Savin |first2=Samuel |date=December 1991 |title=Mid-Miocene isotope stratigraphy in the deep sea: High-resolution correlations, paleoclimatic cycles, and sediment preservation |url=http://doi.wiley.com/10.1029/91PA02561 |journal=[[Paleoceanography and Paleoclimatology]] |language=en |volume=6 |issue=6 |pages=755–806 |doi=10.1029/91PA02561 |bibcode=1991PalOc...6..755W |access-date=4 September 2023}}</ref> Around this time the Mi3b glacial event (a massive expansion of Antarctic glaciers) occurred.<ref>{{cite journal |last1=Mathew |first1=Manoj |last2=Makhankova |first2=Adelya |last3=Menier |first3=David |last4=Sautter |first4=Benjamin |last5=Betzler |first5=Christian |last6=Pierson |first6=Bernard |date=28 April 2020 |title=The emergence of Miocene reefs in South China Sea and its resilient adaptability under varying eustatic, climatic and oceanographic conditions |url=https://www.researchgate.net/publication/340974067 |journal=[[Scientific Reports]] |volume=10 |issue=1 |page=7141 |doi=10.1038/s41598-020-64119-9 |pmid=32346046 |pmc=7189246 |bibcode=2020NatSR..10.7141M |access-date=23 April 2023}}</ref> The East Antarctic Ice Sheet (EAIS) markedly stabilised following the MMCT.<ref>{{Cite journal |last1=Flower |first1=Benjamin P. |last2=Kennett |first2=James P. |date=April 1994 |title=The middle Miocene climatic transition: East Antarctic ice sheet development, deep ocean circulation and global carbon cycling |url=https://linkinghub.elsevier.com/retrieve/pii/0031018294902518 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |language=en |volume=108 |issue=3–4 |pages=537–555 |doi=10.1016/0031-0182(94)90251-8 |bibcode=1994PPP...108..537F |access-date=4 September 2023}}</ref> The intensification of glaciation caused a decoherence of sediment deposition from the 405 kyr eccentricity cycle.<ref>{{Cite journal |last1=Tian |first1=Jun |last2=Zhao |first2=Quanhong |last3=Wang |first3=Pinxian |last4=Li |first4=Qianyu |last5=Cheng |first5=Xinrong |date=September 2008 |title=Astronomically modulated Neogene sediment records from the South China Sea: NEOGENE BENTHIC ISOTOPES |url=http://doi.wiley.com/10.1029/2007PA001552 |journal=[[Paleoceanography and Paleoclimatology]] |language=en |volume=23 |issue=3 |pages=1–20 |doi=10.1029/2007PA001552 |access-date=19 September 2023}}</ref> [[File:Rattlesnake Formation Mural.jpg|thumb|left|300px|Restoration of the volcanic eruption in Harney Basin, of the western US, represented by the [[Rattlesnake Formation]]]] The MMWI ended about 11 Ma, when the Late Miocene Cool Interval (LMCI) started.<ref name="ChristopherScotese" /> A major but transient warming occurred around 10.8-10.7 Ma.<ref>{{Cite journal |last1=Holbourn |first1=Ann |last2=Kuhnt |first2=Wolfgang |last3=Clemens |first3=Steven |last4=Prell |first4=Warren |last5=Andersen |first5=Nils |date=11 November 2013 |title=Middle to late Miocene stepwise climate cooling: Evidence from a high-resolution deep water isotope curve spanning 8 million years: MIOCENE BENTHIC ISOTOPES |url=http://doi.wiley.com/10.1002/2013PA002538 |journal=[[Paleoceanography and Paleoclimatology]] |language=en |volume=28 |issue=4 |pages=688–699 |doi=10.1002/2013PA002538 |s2cid=128368245 |access-date=4 September 2023}}</ref> During the Late Miocene, the Earth's climate began to display a high degree of similarity to that of the present day{{according to whom|date=January 2024}}{{citation needed|date=January 2024}}. The 173 kyr [[Milankovitch cycles|obliquity modulation cycle]] governed by Earth's interactions with Saturn became detectable in the Late Miocene.<ref name="ZhangEtAl2022">{{cite journal |last1=Zhang |first1=Rui |last2=Li |first2=Xiaojuan |last3=Xu |first3=Yong |last4=Li |first4=Jianxian |last5=Sun |first5=Lu |last6=Yue |first6=Leping |last7=Pan |first7=Feng |last8=Xian |first8=Feng |last9=Wei |first9=Xiaohao |last10=Cao |first10=Yuge |date=10 January 2022 |title=The 173-kyr Obliquity Cycle Pacing the Asian Monsoon in the Eastern Chinese Loess Plateau From Late Miocene to Pliocene |url=https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2021GL097008 |journal=[[Geophysical Research Letters]] |volume=49 |issue=2 |doi=10.1029/2021GL097008 |bibcode=2022GeoRL..4997008Z |s2cid=245868256 |access-date=20 March 2023}}</ref> By 12 Ma, [[Oregon]] was a savanna akin to that of the western margins of the [[Sierra Nevada]] of northern [[California]].<ref>{{Cite journal |last=Retallack |first=Gregory J. |date=4 November 2004 |title=Late Miocene climate and life on land in Oregon within a context of Neogene global change |url=https://www.sciencedirect.com/science/article/pii/S0031018204003943 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=214 |issue=1 |pages=97–123 |doi=10.1016/j.palaeo.2004.07.024 |issn=0031-0182 |access-date=12 January 2024 |via=Elsevier Science Direct}}</ref> Central Australia became progressively drier,<ref>{{cite journal |last1=Mao |first1=Xuegang |last2=Retallack |first2=Gregory |date=15 January 2019 |title=Late Miocene drying of central Australia |url=https://www.sciencedirect.com/science/article/abs/pii/S0031018218306898 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=514 |pages=292–304 |doi=10.1016/j.palaeo.2018.10.008 |bibcode=2019PPP...514..292M |s2cid=135124769 |access-date=14 July 2023}}</ref> although southwestern Australia experienced significant wettening from around 12 to 8 Ma.<ref name="GroeneveldEtAl2017" /> The South Asian Winter Monsoon (SAWM) underwent strengthening ~9.2–8.5 Ma.<ref>{{cite journal |last1=Lee |first1=Jongmin |last2=Kim |first2=Sunghan |last3=Lee |first3=Jae Il |last4=Cho |first4=Hyen Goo |last5=Phillips |first5=Stephen C. |last6=Khim |first6=Bo-Kyeun |date=15 December 2020 |title=Monsoon-influenced variation of clay mineral compositions and detrital Nd-Sr isotopes in the western Andaman Sea (IODP Site U1447) since the late Miocene |url=https://www.sciencedirect.com/science/article/abs/pii/S0031018219303773 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=538 |page=109339 |doi=10.1016/j.palaeo.2019.109339 |bibcode=2020PPP...53809339L |s2cid=202179283 |access-date=7 July 2023}}</ref> From 7.9 to 5.8 Ma, the East Asian Winter Monsoon (EAWM) became stronger synchronously with a southward shift of the subarctic front.<ref>{{cite journal |last1=Matsuzaki |first1=Kenji M. |last2=Ikeda |first2=Masayuki |last3=Tada |first3=Ryuji |date=20 July 2022 |title=Weakened pacific overturning circulation, winter monsoon dominance and tectonism re-organized Japan Sea paleoceanography during the Late Miocene global cooling |journal=[[Scientific Reports]] |volume=12 |issue=1 |page=11396 |doi=10.1038/s41598-022-15441-x |pmid=35859095 |pmc=9300741 |bibcode=2022NatSR..1211396M }}</ref> [[Greenland]] may have begun to have large glaciers as early as 8 to 7 Ma,<ref>{{cite journal |last1=Larsen |first1=H. C. |last2=Saunders |first2=A. D. |last3=Clift |first3=P. D. |last4=Beget |first4=J. |last5=Wei |first5=W. |last6=Spezzaferri |first6=S. |title=Seven Million Years of Glaciation in Greenland |journal=[[Science (journal)|Science]] |date=13 May 1994 |volume=264 |issue=5161 |pages=952–955 |doi=10.1126/science.264.5161.952|pmid=17830083 |bibcode=1994Sci...264..952L |s2cid=10031704 |url=https://digitalcommons.unl.edu/geosciencefacpub/55 }}</ref><ref>{{cite journal |last1=John |first1=Kristen E. K. St. |last2=Krissek |first2=Lawrence A. |title=The late Miocene to Pleistocene ice-rafting history of southeast Greenland |journal=[[Boreas (journal)|Boreas]] |date=28 June 2008 |volume=31 |issue=1 |pages=28–35 |doi=10.1111/j.1502-3885.2002.tb01053.x|s2cid=128606939 |doi-access=free }}</ref> although the climate for the most part remained warm enough to support forests there well into the Pliocene.<ref>{{cite journal |last1=Funder |first1=Svend |last2=Abrahamsen |first2=Niels |last3=Bennike |first3=Ole |last4=Feyling-Hanssen |first4=Rolf W. |title=Forested Arctic: Evidence from North Greenland |journal=[[Geology (journal)|Geology]] |date=1 August 1985 |volume=13 |issue=8 |pages=542–546 |doi=10.1130/0091-7613(1985)13<542:FAEFNG>2.0.CO;2|bibcode=1985Geo....13..542F }}</ref> Zhejiang, China was noticeably more humid than today.<ref>{{Cite journal |last1=Wang |first1=Xue-Lian |last2=Wang |first2=Zi-Xi |last3=Li |first3=Rui-Yun |last4=Deng |first4=Peng |last5=Ma |first5=Li |last6=Sun |first6=Bai-Nian |date=January 2016 |title=Vein density of angiosperms as a paleoclimate proxy: a case study using fossil leaves of Zelkova and Machilus |url=https://linkinghub.elsevier.com/retrieve/pii/S1871174X15000785 |journal=[[Palaeoworld]] |language=en |volume=25 |issue=1 |pages=60–66 |doi=10.1016/j.palwor.2015.11.002 |access-date=20 July 2024 |via=Elsevier Science Direct}}</ref> In the [[Great Rift Valley]] of [[Kenya]], there was a gradual and progressive trend of increasing aridification, though it was not unidirectional, and wet humid episodes continued to occur.<ref>{{cite journal |last1=Jacobs |first1=Bonnie Fine |date=8 April 2016 |title=Estimation of low-latitude paleoclimates using fossil angiosperm leaves: examples from the Miocene Tugen Hills, Kenya |url=https://www.cambridge.org/core/journals/paleobiology/article/abs/estimation-of-lowlatitude-paleoclimates-using-fossil-angiosperm-leaves-examples-from-the-miocene-tugen-hills-kenya/93FE0A15844E2E21153DCCE41906B7BB |journal=[[Paleobiology (journal)|Paleobiology]] |volume=28 |issue=3 |pages=399–421 |doi=10.1666/0094-8373(2002)028<0399:EOLLPU>2.0.CO;2 <!-- several wrong dois for this one --> |bibcode=2002Pbio...28..399J |access-date=16 June 2023 |jstor=3595489 |s2cid=198156844 }}</ref> Between 7 and 5.3 Ma, temperatures dropped sharply again in the Late Miocene Cooling (LMC),<ref name="ChristopherScotese" /> most likely as a result of a decline in atmospheric carbon dioxide<ref name="BrownEtAl2022">{{cite journal |last1=Brown |first1=Rachel M. |last2=Chalk |first2=Thomas B. |last3=Crocker |first3=Anya J. |last4=Wilson |first4=Paul A. |last5=Foster |first5=Gavin L. |date=25 July 2022 |title=Late Miocene cooling coupled to carbon dioxide with Pleistocene-like climate sensitivity |url=https://www.nature.com/articles/s41561-022-00982-7 |journal=[[Nature Geoscience]] |volume=15 |issue=8 |pages=664–670 |doi=10.1038/s41561-022-00982-7 |bibcode=2022NatGe..15..664B |hdl=10037/29226 |s2cid=251043167 |access-date=8 December 2022|hdl-access=free }}</ref><ref>{{cite journal |last1=Tanner |first1=Thomas |last2=Hernández-Almeida |first2=Iván |last3=Drury |first3=Anna Joy |last4=Guitián |first4=José |last5=Stoll |first5=Heather |date=10 December 2020 |title=Decreasing Atmospheric CO2 During the Late Miocene Cooling |url=https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2020PA003925 |journal=[[Paleoceanography and Paleoclimatology]] |volume=35 |issue=12 |doi=10.1029/2020PA003925 |bibcode=2020PaPa...35.3925T |s2cid=230534117 |access-date=17 March 2023}}</ref><ref>{{cite journal |last1=Wen |first1=Yixiong |last2=Zhang |first2=Laiming |last3=Holbourn |first3=Ann E. |last4=Zhu |first4=Chenguang |last5=Huntington |first5=Katharine W. |last6=Jin |first6=Tianjie |last7=Li |first7=Yalin |last8=Wang |first8=Chengshan |date=23 January 2013 |title=CO2-forced Late Miocene cooling and ecosystem reorganizations in East Asia |journal=[[Proceedings of the National Academy of Sciences of the United States of America]] |volume=120 |issue=5 |pages=e2214655120 |doi=10.1073/pnas.2214655120 |pmid=36689658 |pmc=9945954 |doi-access=free }}</ref> and a drop in the amplitude of Earth's obliquity,<ref name="QinEtAl2022">{{cite journal |last1=Qin |first1=Jie |last2=Zhang |first2=Rui |last3=Kravchinsky |first3=Vadim A. |last4=Valet |first4=Jean-Pierre |last5=Sagnotti |first5=Leonardo |last6=Li |first6=Jianxing |last7=Xu |first7=Yong |last8=Anwar |first8=Taslima |last9=Yue |first9=Leping |date=2 April 2022 |title=1.2 Myr Band of Earth-Mars Obliquity Modulation on the Evolution of Cold Late Miocene to Warm Early Pliocene Climate |url=https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022JB024131 |journal= Journal of Geophysical Research: Solid Earth|volume=127 |issue=4 |doi=10.1029/2022JB024131 |bibcode=2022JGRB..12724131Q |s2cid=247933545 |access-date=24 November 2022}}</ref> and the [[Antarctic ice sheet]] was approaching its present-day size and thickness. Ocean temperatures plummeted to near-modern values during the LMC;<ref>{{cite journal |last1=Herbert |first1=Timothy D. |last2=Lawrence |first2=Kira T. |last3=Tzanova |first3=Alexandrina |last4=Peterson |first4=Laura Cleaveland |last5=Caballero-Gill |first5=Rocio |last6=Kelly |first6=Christopher S. |date=26 September 2016 |title=Late Miocene global cooling and the rise of modern ecosystems |url=https://www.nature.com/articles/ngeo2813?error=cookies_not_supported&code=e9cbd054-4333-471e-b97c-72ec80d9099d |journal=[[Nature Geoscience]] |volume=9 |issue=11 |pages=843–847 |doi=10.1038/ngeo2813 |bibcode=2016NatGe...9..843H |access-date=17 March 2023}}</ref> extratropical [[sea surface temperature]]s dropped substantially by approximately 7–9 °C.<ref>{{cite journal |last1=Mejía |first1=Luz María |last2=Méndez-Vicente |first2=Ana |last3=Abrevaya |first3=Lorena |last4=Lawrence |first4=Kira T. |last5=Ladlow |first5=Caroline |last6=Bolton |first6=Clara |last7=Cacho |first7=Isabel |last8=Stoll |first8=Heather |date=1 December 2017 |title=A diatom record of CO2 decline since the late Miocene |journal=[[Earth and Planetary Science Letters]] |volume=479 |pages=18–33 |doi=10.1016/j.epsl.2017.08.034 |bibcode=2017E&PSL.479...18M |doi-access=free }}</ref> 41 kyr obliquity cycles became the dominant orbital climatic control 7.7 Ma and this dominance strengthened 6.4 Ma.<ref>{{Cite journal |last1=Drury |first1=Anna Joy |last2=Westerhold |first2=Thomas |last3=Frederichs |first3=Thomas |last4=Tian |first4=Jun |last5=Wilkens |first5=Roy |last6=Channell |first6=James E.T. |last7=Evans |first7=Helen |last8=John |first8=Cédric M. |last9=Lyle |first9=Mitch |last10=Röhl |first10=Ursula |date=1 October 2017 |title=Late Miocene climate and time scale reconciliation: Accurate orbital calibration from a deep-sea perspective |url=https://linkinghub.elsevier.com/retrieve/pii/S0012821X17304223 |journal=[[Earth and Planetary Science Letters]] |language=en |volume=475 |pages=254–266 |doi=10.1016/j.epsl.2017.07.038 |bibcode=2017E&PSL.475..254D |access-date=20 July 2024 |via=Elsevier Science Direct}}</ref> Benthic δ<sup>18</sup>O values show significant glaciation occurred from 6.26 to 5.50 Ma, during which glacial-interglacial cycles were governed by the 41 kyr obliquity cycle.<ref>{{Cite journal |last1=Hodell |first1=David A. |last2=Curtis |first2=Jason H. |last3=Sierro |first3=Francisco J. |last4=Raymo |first4=Maureen E. |date=April 2004 |title=Correlation of Late Miocene to Early Pliocene sequences between the Mediterranean and North Atlantic |url=https://agupubs.onlinelibrary.wiley.com/doi/10.1029/1999PA000487 |journal=[[Paleoceanography and Paleoclimatology]] |language=en |volume=16 |issue=2 |pages=164–178 |doi=10.1029/1999PA000487 |issn=0883-8305 |access-date=19 September 2023}}</ref> A major reorganisation of the [[carbon cycle]] occurred approximately 6 Ma, causing continental carbon reservoirs to no longer expand during cold spells, as they had done during cold periods in the Oligocene and most of the Miocene.<ref>{{cite journal |last1=De Vleeschouwer |first1=David |last2=Drury |first2=Anna Joy |last3=Vahlenkamp |first3=Maximilian |last4=Rochholz |first4=Fiona |last5=Liebrand |first5=Diederik |last6=Pälike |first6=Heiko |date=6 October 2020 |title=High-latitude biomes and rock weathering mediate climate–carbon cycle feedbacks on eccentricity timescales |journal=[[Nature Communications]] |volume=11 |issue=1 |page=5013 |doi=10.1038/s41467-020-18733-w |pmid=33024102 |pmc=7538577 |bibcode=2020NatCo..11.5013D }}</ref> At the end of the Miocene, global temperatures rose again as the [[amplitude]] of Earth's obliquity increased,<ref name="QinEtAl2022" /> which caused increased aridity in Central Asia.<ref>{{Cite journal |last1=Ao |first1=Hong |last2=Rohling |first2=Eelco J. |last3=Zhang |first3=Ran |last4=Roberts |first4=Andrew P. |last5=Holbourn |first5=Ann E. |last6=Ladant |first6=Jean-Baptiste |last7=Dupont-Nivet |first7=Guillaume |last8=Kuhnt |first8=Wolfgang |last9=Zhang |first9=Peng |last10=Wu |first10=Feng |last11=Dekkers |first11=Mark J. |last12=Liu |first12=Qingsong |last13=Liu |first13=Zhonghui |last14=Xu |first14=Yong |last15=Poulsen |first15=Christopher J. |date=26 November 2021 |title=Global warming-induced Asian hydrological climate transition across the Miocene–Pliocene boundary |journal=[[Nature Communications]] |language=en |volume=12 |issue=1 |page=6935 |doi=10.1038/s41467-021-27054-5 |issn=2041-1723 |pmc=8626456 |pmid=34836960 |bibcode=2021NatCo..12.6935A }}</ref> Around 5.5 Ma, the EAWM underwent a period of rapid intensification.<ref name="HanFangBergerYin2011">{{cite journal |last1=Han |first1=Wenxia |last2=Fang |first2=Xiaomin |last3=Berger |first3=André |last4=Yin |first4=Qiuzhen |date=22 December 2011 |title=An astronomically tuned 8.1 Ma eolian record from the Chinese Loess Plateau and its implication on the evolution of Asian monsoon |url=https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2011JD016237 |journal=[[Journal of Geophysical Research]] |volume=116 |issue=D24 |pages=1–13 |doi=10.1029/2011JD016237 |bibcode=2011JGRD..11624114H |access-date=20 March 2023}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Miocene
(section)
Add topic