Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Magnetic circular dichroism
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Discrete line spectrum === In cases of a discrete spectrum, the observed <math>\Delta k</math> at a particular frequency <math>\omega</math> can be treated as a sum of contributions from each transition, :<math>\Delta k_\mathrm{obs}(\omega) = \sum_{a,j} \Delta k_{a\to j}(\omega) = \sum_{a,j} [\Delta k_{a\to j}]f_{ja}(\omega)</math> where <math>\Delta k_{a\to j}(\omega)</math> is the contribution at <math>\omega</math> from the <math>a\to j</math> transition, <math>[\Delta k_{a\to j}]</math> is the absorption coefficient for the <math>a\to j</math> transition, and <math>f_{ja}(\omega)</math> is a bandshape function (<math>\textstyle{\int_{0}^{\infty} f_{ja}(\omega) d \omega = 1}</math>). Because eigenstates <math>a</math> and <math>j</math> depend on the applied external field, the value of <math>\Delta k_\mathrm{obs}(\omega)</math> varies with field. It is frequently useful to compare this value to the absorption coefficient in the absence of an applied field, often denoted :<math>k^0(\omega) = \sum_{a,j} k^0_{a\to j}(\omega) = \sum_{a,j} [k^0_{a\to j}]f^0_{ja}(\omega)</math> When the [[Zeeman effect]] is small compared to zero-field state separations, line width, and <math>kT</math> and when the line shape is independent of the applied external field <math>H</math>, first-order perturbation theory can be applied to separate <math>\Delta k</math> into three contributing [[Faraday effect|Faraday]] terms, called <math>\mathcal{A}_1</math>, <math>\mathcal{B}_0</math>, and <math>\mathcal{C}_0</math>. The subscript indicates the moment such that <math>\mathcal{A}_1</math> contributes a derivative-shaped signal and <math>\mathcal{B}_0</math> and <math>\mathcal{C}_0</math> contribute regular absorptions. Additionally, a zero-field absorption term <math>\mathcal{D}_0</math> is defined. The relationships between <math>\Delta k</math>, <math>k^0</math>, and these Faraday terms are :<math>\Delta k_{A\to J}(\omega) = -\frac{4}{3} \gamma N^0_A \left\{\frac{\mathcal{A}_1(A\to J)}{\hbar} \frac{\partial f^0_{ja}(\omega)}{\partial \omega} + \left[\mathcal{B}_0(A\to J) + \frac{\mathcal{C}_0(A\to J)}{k_BT}\right]f^0_{ja}(\omega)\right\}H </math> :<math>k^0_{A\to J}(\omega) = \frac{2}{3} \gamma N_A^0 \mathcal{D}_0(A\to J) f^0_{ja}(\omega)</math> for external field strength <math>H</math>, Boltzmann constant <math>k_B</math>, temperature <math>T</math>, and a proportionality constant <math>\gamma</math>. This expression requires assumptions that <math>j</math> is sufficiently high in energy that <math>N_j \approx 0</math>, and that the temperature of the sample is high enough that magnetic saturation does not produce nonlinear <math>\mathcal{C}</math> term behavior. Though one must pay attention to proportionality constants, there is a proportionality between <math>\Delta k</math> and [[Molar attenuation coefficient|molar extinction coefficient]] <math>\epsilon</math> and absorbance <math>A/Cl</math> for concentration <math>C</math> and path length <math>l</math>. These Faraday terms are the usual language in which MCD spectra are discussed. Their definitions from perturbation theory are<ref name=steph2>{{cite book|author=Stephens, P. J.|title=Advances in Chemical Physics |journal=Adv. Chem. Phys.|date=1976|volume=35|pages=197β264|doi=10.1002/9780470142547.ch4|chapter=Magnetic Circular Dichroism|isbn=9780470142547}}</ref> :<math>\begin{align} \mathcal{A}_1 &= -\frac{1}{d_A} \sum_{\alpha,\lambda} \left( \langle J_\lambda |L_z+2S_z| J_\lambda\rangle - \langle A_\alpha |L_z+2S_z| A_\alpha\rangle\right) \times \left(|\langle A_\alpha|m_-|J_\lambda\rangle|^2 - \langle A_\alpha|m_+|J_\lambda\rangle|^2\right) \\ \mathcal{B}_0 &= \frac{2}{d_A} \Re \sum_{\alpha,\lambda}\left[ \sum_{K\neq J,\kappa} \frac{1}{E_K-E_J} \langle J_\lambda |L_z+2S_z| K_\kappa\rangle \times \left(\langle A_\alpha|m_-|J_\lambda\rangle\langle K_\kappa|m_+|A_\alpha\rangle - \langle A_\alpha|m_+|J_\lambda\rangle\langle K_\kappa|m_-|A_\alpha\rangle\right) \right. \\ &\qquad \left. + \sum_{K\neq A,\kappa} \frac{1}{E_K-E_A} \langle K_\kappa |L_z+2S_z| A_\alpha\rangle \times \left( \langle A_\alpha|m_-|J_\lambda\rangle\langle J_\lambda|m_+|K_\kappa\rangle - \langle A_\alpha|m_+|J_\lambda\rangle\langle J_\lambda|m_-|K_\kappa\rangle \right) \right] \\ \mathcal{C}_0 &= \frac{1}{d_A} \sum_{\alpha,\lambda} \langle A_\alpha|L_z+2S_z|A_\alpha\rangle \times \left(|\langle A_\alpha|m_-|J_\lambda\rangle|^2 - \langle A_\alpha|m_+|J_\lambda\rangle|^2\right) \\ \mathcal{D}_0 &= \frac{1}{2d_A} \sum_{\alpha,\lambda} \left(|\langle A_\alpha|m_-|J_\lambda\rangle|^2 + \langle A_\alpha|m_+|J_\lambda\rangle|^2\right) \end{align}</math> where <math>d_A</math> is the degeneracy of ground state <math>A</math>, <math>K</math> labels states other than <math>A</math> or <math>J</math>, <math>\alpha</math> and <math>\lambda</math> and <math>\kappa</math> label the levels within states <math>A</math> and <math>J</math> and <math>K</math> (respectively), <math>E_X</math> is the energy of unperturbed state <math>X</math>, <math>L_z</math> is the <math>z</math> angular momentum operator, <math>S_z</math> is the <math>z</math> spin operator, and <math>\Re</math> indicates the real part of the expression.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Magnetic circular dichroism
(section)
Add topic