Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Lp space
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=={{math|''ℓ''{{i sup|''p''}}}} spaces and sequence spaces== {{Details|Sequence space}} The <math>p</math>-norm can be extended to vectors that have an infinite number of components ([[sequence]]s), which yields the space <math>\ell^p.</math> This contains as special cases: * <math>\ell^1,</math> the space of sequences whose series are [[absolute convergence|absolutely convergent]], * <math>\ell^2,</math> the space of '''square-summable''' sequences, which is a [[Hilbert space]], and * <math>\ell^\infty,</math> the space of [[bounded sequence]]s. The space of sequences has a natural vector space structure by applying scalar addition and multiplication. Explicitly, the vector sum and the scalar action for infinite [[sequence]]s of real (or [[complex number|complex]]) numbers are given by: <math display="block">\begin{align} & (x_1, x_2, \ldots, x_n, x_{n+1},\ldots)+(y_1, y_2, \ldots, y_n, y_{n+1},\ldots) \\ = {} & (x_1+y_1, x_2+y_2, \ldots, x_n+y_n, x_{n+1}+y_{n+1},\ldots), \\[6pt] & \lambda \cdot \left (x_1, x_2, \ldots, x_n, x_{n+1},\ldots \right) \\ = {} & (\lambda x_1, \lambda x_2, \ldots, \lambda x_n, \lambda x_{n+1},\ldots). \end{align}</math> Define the <math>p</math>-norm: <math display="block">\|x\|_p = \left(|x_1|^p + |x_2|^p + \cdots +|x_n|^p + |x_{n+1}|^p + \cdots\right)^{1/p}</math> Here, a complication arises, namely that the [[series (mathematics)|series]] on the right is not always convergent, so for example, the sequence made up of only ones, <math>(1, 1, 1, \ldots),</math> will have an infinite <math>p</math>-norm for <math>1 \leq p < \infty.</math> The space <math>\ell^p</math> is then defined as the set of all infinite sequences of real (or complex) numbers such that the <math>p</math>-norm is finite. One can check that as <math>p</math> increases, the set <math>\ell^p</math> grows larger. For example, the sequence <math display="block">\left(1, \frac{1}{2}, \ldots, \frac{1}{n}, \frac{1}{n+1}, \ldots\right)</math> is not in <math>\ell^1,</math> but it is in <math>\ell^p</math> for <math>p > 1,</math> as the series <math display="block">1^p + \frac{1}{2^p} + \cdots + \frac{1}{n^p} + \frac{1}{(n+1)^p} + \cdots,</math> diverges for <math>p = 1</math> (the [[harmonic series (mathematics)|harmonic series]]), but is convergent for <math>p > 1.</math> One also defines the <math>\infty</math>-norm using the [[supremum]]: <math display="block">\|x\|_\infty = \sup(|x_1|, |x_2|, \dotsc, |x_n|,|x_{n+1}|, \ldots)</math> and the corresponding space <math>\ell^\infty</math> of all bounded sequences. It turns out that<ref>{{Citation| last1=Maddox | first1=I. J. | title=Elements of Functional Analysis | publisher=CUP | location=Cambridge | edition=2nd | year=1988}}, page 16</ref> <math display="block">\|x\|_\infty = \lim_{p \to \infty} \|x\|_p</math> if the right-hand side is finite, or the left-hand side is infinite. Thus, we will consider <math>\ell^p</math> spaces for <math>1 \leq p \leq \infty.</math> The <math>p</math>-norm thus defined on <math>\ell^p</math> is indeed a norm, and <math>\ell^p</math> together with this norm is a [[Banach space]]. ===General ℓ<sup>''p''</sup>-space=== In complete analogy to the preceding definition one can define the space <math>\ell^p(I)</math> over a general [[index set]] <math>I</math> (and <math>1 \leq p < \infty</math>) as <math display="block">\ell^p(I) = \left\{(x_i)_{i\in I} \in \mathbb{K}^I : \sum_{i \in I} |x_i|^p < +\infty\right\},</math> where convergence on the right means that only countably many summands are nonzero (see also [[Unconditional convergence]]). With the norm <math display="block">\|x\|_p = \left(\sum_{i\in I} |x_i|^p\right)^{1/p}</math> the space <math>\ell^p(I)</math> becomes a Banach space. In the case where <math>I</math> is finite with <math> n</math> elements, this construction yields <math>\Reals^n</math> with the <math>p</math>-norm defined above. If <math>I</math> is countably infinite, this is exactly the sequence space <math>\ell^p</math> defined above. For uncountable sets <math>I</math> this is a non-[[Separable space|separable]] Banach space which can be seen as the [[Locally convex topological vector space|locally convex]] [[direct limit]] of <math>\ell^p</math>-sequence spaces.<ref>Rafael Dahmen, Gábor Lukács: ''Long colimits of topological groups I: Continuous maps and homeomorphisms.'' in: ''Topology and its Applications'' Nr. 270, 2020. Example 2.14 </ref> For <math>p = 2,</math> the <math>\|\,\cdot\,\|_2</math>-norm is even induced by a canonical [[inner product]] <math>\langle \,\cdot,\,\cdot\rangle,</math> called the ''{{visible anchor|Euclidean inner product}}'', which means that <math>\|\mathbf{x}\|_2 = \sqrt{\langle\mathbf{x}, \mathbf{x}\rangle}</math> holds for all vectors <math>\mathbf{x}.</math> This inner product can expressed in terms of the norm by using the [[polarization identity]]. On <math>\ell^2,</math> it can be defined by <math display="block">\langle \left(x_i\right)_{i}, \left(y_n\right)_{i} \rangle_{\ell^2} ~=~ \sum_i x_i \overline{y_i}.</math> Now consider the case <math>p = \infty.</math> Define{{refn|group=note|The condition <math>\sup\operatorname{range} |x| < + \infty.</math> is not equivalent to <math>\sup\operatorname{range} |x|</math> being finite, unless <math>X \neq \varnothing.</math>}} <math display="block">\ell^\infty(I)=\{x\in \mathbb K^I : \sup\operatorname{range}|x|<+\infty\},</math> where for all <math>x</math><ref>{{cite book|last1=Garling|first1=D. J. H.|title=Inequalities: A Journey into Linear Analysis|date=2007|publisher=Cambridge University Press|isbn=978-0-521-87624-7|page=54}}</ref>{{refn|group=note|If <math>X = \varnothing</math> then <math>\sup\operatorname{range} |x| = - \infty.</math>}} <math display="block">\|x\|_\infty\equiv\inf\{C \in \Reals_{\geq 0}:|x_i| \leq C\text{ for all } i \in I\} = \begin{cases}\sup\operatorname{range}|x|&\text{if } X\neq\varnothing,\\0&\text{if } X=\varnothing.\end{cases}</math> The index set <math>I</math> can be turned into a [[measure space]] by giving it the [[Σ-algebra#Simple set-based examples|discrete σ-algebra]] and the [[counting measure]]. Then the space <math>\ell^p(I)</math> is just a special case of the more general <math>L^p</math>-space (defined below).
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Lp space
(section)
Add topic