Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Log-normal distribution
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Characteristic function and moment generating function === All moments of the log-normal distribution exist and <math display="block">\operatorname{E}[X^n] = e^{n\mu+n^2\sigma^2/2}</math> This can be derived by letting <math display="inline">z = \tfrac{\ln x - \mu}{\sigma} - n \sigma</math> within the integral. However, the log-normal distribution is not determined by its moments.<ref name="Heyde">{{Citation | last = Heyde | first = CC. | title = On a Property of the Lognormal Distribution | work = Journal of the Royal Statistical Society, Series B | date = 2010 | volume = 25 | issue = 2 | pages = 392β393 | doi = 10.1007/978-1-4419-5823-5_6 | isbn = 978-1-4419-5822-8 | doi-access = free}}</ref> This implies that it cannot have a defined moment generating function in a neighborhood of zero.<ref>{{Cite book | last = Billingsley | first = Patrick | url = https://www.worldcat.org/oclc/780289503 | title = Probability and Measure | date = 2012 | publisher = Wiley | isbn = 978-1-118-12237-2 | edition = Anniversary | location = Hoboken, N.J. | pages = 415 | oclc = 780289503}}</ref> Indeed, the expected value <math>\operatorname{E}[e^{t X}]</math> is not defined for any positive value of the argument <math>t</math>, since the defining integral diverges. The [[characteristic function (probability theory)|characteristic function]] <math>\operatorname{E}[e^{i t X}]</math> is defined for real values of {{mvar|t}}, but is not defined for any complex value of {{mvar|t}} that has a negative imaginary part, and hence the characteristic function is not [[Analytic function|analytic]] at the origin. Consequently, the characteristic function of the log-normal distribution cannot be represented as an infinite convergent series.<ref name="Holgate">{{Cite journal | last = Holgate | first = P. | year = 1989 | title = The lognormal characteristic function, vol. 18, pp. 4539β4548, 1989 | journal = Communications in Statistics β Theory and Methods | volume = 18 | issue = 12 | pages = 4539β4548 | doi = 10.1080/03610928908830173}}</ref> In particular, its Taylor [[formal series]] diverges: <math display="block">\sum_{n=0}^\infty \frac{{\left(it\right)}^n}{n!} e^{n\mu + n^2\sigma^2/2}</math> However, a number of alternative [[divergent series]] representations have been obtained.<ref name="Holgate" /><ref name="Barakat">{{Cite journal | last = Barakat | first = R. | year = 1976 | title = Sums of independent lognormally distributed random variables | journal = Journal of the Optical Society of America | volume = 66 | issue = 3 | pages = 211β216 | bibcode = 1976JOSA...66..211B | doi = 10.1364/JOSA.66.000211}}</ref><ref name="Barouch">{{Cite journal | last1 = Barouch | first1 = E. | last2 = Kaufman | first2 = GM. | last3 = Glasser | first3 = ML. | year = 1986 | title = On sums of lognormal random variables | url = http://dspace.mit.edu/bitstream/handle/1721.1/48703/onsumsoflognorma00baro.pdf | journal = Studies in Applied Mathematics | volume = 75 | issue = 1 | pages = 37β55 | doi = 10.1002/sapm198675137 | hdl = 1721.1/48703 | hdl-access = free }}</ref><ref name="Leipnik">{{Cite journal | last = Leipnik | first = Roy B. | date = January 1991 | title = On Lognormal Random Variables: I β The Characteristic Function | url = https://www.cambridge.org/core/services/aop-cambridge-core/content/view/F1563B5AD8918EF2CD51092F82EB0B73/S0334270000006901a.pdf/div-class-title-on-lognormal-random-variables-i-the-characteristic-function-div.pdf | journal = Journal of the Australian Mathematical Society, Series B | volume = 32 | issue = 3 | pages = 327β347 | doi = 10.1017/S0334270000006901 | doi-access = free }}</ref> A closed-form formula for the characteristic function <math>\varphi(t)</math> with <math>t</math> in the domain of convergence is not known. A relatively simple approximating formula is available in closed form, and is given by<ref name="Asmussen">S. Asmussen, J.L. Jensen, L. Rojas-Nandayapa (2016). "On the Laplace transform of the Lognormal distribution", [https://link.springer.com/article/10.1007/s11009-014-9430-7 Methodology and Computing in Applied Probability 18 (2), 441-458.] [http://data.imf.au.dk/publications/thiele/2013/math-thiele-2013-06.pdf Thiele report 6 (13).]</ref> <math display="block">\varphi(t) \approx \frac{\exp\left(-\frac{W^2(-it\sigma^2e^\mu) + 2W(-it\sigma^2e^\mu)}{2\sigma^2} \right)}{\sqrt{1 + W{\left(-it\sigma^2e^\mu\right)}}}</math> where <math>W</math> is the [[Lambert W function]]. This approximation is derived via an asymptotic method, but it stays sharp all over the domain of convergence of <math>\varphi</math>.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Log-normal distribution
(section)
Add topic