Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Kronecker delta
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Generalizations== If it is considered as a type <math>(1,1)</math> [[tensor]], the Kronecker tensor can be written <math>\delta^i_j</math> with a [[covariance and contravariance of vectors|covariant]] index <math>j</math> and [[Covariance and contravariance of vectors|contravariant]] index <math>i</math>: <math display="block">\delta^{i}_{j} = \begin{cases} 0 & (i \ne j), \\ 1 & (i = j). \end{cases}</math> This tensor represents: * The identity mapping (or identity matrix), considered as a [[linear mapping]] <math>V\to V</math> or <math>V^*\to V^*</math> * The [[trace (linear algebra)|trace]] or [[tensor contraction]], considered as a mapping <math>V^* \otimes V\to K</math> * The map <math>K\to V^*\otimes V</math>, representing [[scalar multiplication]] as a sum of [[outer product]]s. The '''{{visible anchor|generalized Kronecker delta}}''' or '''multi-index Kronecker delta''' of order <math>2p</math> is a type <math>(p,p)</math> tensor that is completely [[antisymmetric tensor|antisymmetric]] in its <math>p</math> upper indices, and also in its <math>p</math> lower indices. Two definitions that differ by a factor of <math>p!</math> are in use. Below, the version is presented has nonzero components scaled to be <math>\pm 1</math>. The second version has nonzero components that are <math>\pm 1/p!</math>, with consequent changes scaling factors in formulae, such as the scaling factors of <math>1/p!</math> in ''{{section link||Properties of the generalized Kronecker delta}}'' below disappearing<!--This is worded awkwardly-->.<ref>{{cite web| url=http://people.physics.tamu.edu/pope/geom-group.pdf| first=Christopher|last=Pope| date=2008| title=Geometry and Group Theory}}</ref> === Definitions of the generalized Kronecker delta === In terms of the indices, the generalized Kronecker delta is defined as:<ref>{{cite book|first=Theodore|last=Frankel|title=The Geometry of Physics: An Introduction|edition=3rd|date=2012|publisher=Cambridge University Press|isbn=9781107602601}}</ref><ref>{{cite book|first=D. C.|last=Agarwal|title=Tensor Calculus and Riemannian Geometry|edition=22nd|date=2007|publisher=Krishna Prakashan Media}}{{ISBN missing}}</ref> <math display="block">\delta^{\mu_1 \dots \mu_p }_{\nu_1 \dots \nu_p} = \begin{cases} \phantom-1 & \quad \text{if } \nu_1 \dots \nu_p \text{ are distinct integers and are an even permutation of } \mu_1 \dots \mu_p \\ -1 & \quad \text{if } \nu_1 \dots \nu_p \text{ are distinct integers and are an odd permutation of } \mu_1 \dots \mu_p \\ \phantom-0 & \quad \text{in all other cases}. \end{cases}</math> Let <math>\mathrm{S}_p</math> be the [[symmetric group]] of degree <math>p</math>, then: <math display="block">\delta^{\mu_1 \dots \mu_p}_{\nu_1 \dots \nu_p} = \sum_{\sigma \in \mathrm{S}_p} \sgn(\sigma)\, \delta^{\mu_1}_{\nu_{\sigma(1)}}\cdots\delta^{\mu_p}_{\nu_{\sigma(p)}} = \sum_{\sigma \in \mathrm{S}_p} \sgn(\sigma)\, \delta^{\mu_{\sigma(1)}}_{\nu_1}\cdots\delta^{\mu_{\sigma(p)}}_{\nu_p}. </math> Using [[Antisymmetric tensor#Notation|anti-symmetrization]]: <math display="block">\delta^{\mu_1 \dots \mu_p}_{\nu_1 \dots \nu_p} = p! \delta^{\mu_1}_{[ \nu_1} \dots \delta^{\mu_p}_{\nu_p ]} = p! \delta^{[ \mu_1}_{\nu_1} \dots \delta^{\mu_p ]}_{\nu_p}.</math> In terms of a <math>p\times p</math> [[determinant]]:<ref>{{cite book |first1=David |last1=Lovelock |first2=Hanno |last2=Rund |title=Tensors, Differential Forms, and Variational Principles |publisher=Courier Dover Publications |year=1989 |isbn=0-486-65840-6 }}</ref> <math display="block">\delta^{\mu_1 \dots \mu_p }_{\nu_1 \dots \nu_p} = \begin{vmatrix} \delta^{\mu_1}_{\nu_1} & \cdots & \delta^{\mu_1}_{\nu_p} \\ \vdots & \ddots & \vdots \\ \delta^{\mu_p}_{\nu_1} & \cdots & \delta^{\mu_p}_{\nu_p} \end{vmatrix}.</math> Using the [[Laplace expansion]] ([[Determinant#Laplace's expansion and the adjugate matrix|Laplace's formula]]) of determinant, it may be defined [[Recursion|recursively]]:<ref>A recursive definition requires a first case, which may be taken as {{math|1=''δ'' = 1}} for {{math|1=''p'' = 0}}, or alternatively {{math|1=''δ''{{su|p=''μ''|b=''ν''|lh=0.9em}} = ''δ''{{su|p=''μ''|b=''ν''|lh=0.9em}}}} for {{math|1=''p'' = 1}} (generalized delta in terms of standard delta).</ref> <math display="block">\begin{align} \delta^{\mu_1 \dots \mu_p}_{\nu_1 \dots \nu_p} &= \sum_{k=1}^p (-1)^{p+k} \delta^{\mu_p}_{\nu_k} \delta^{\mu_1 \dots \mu_{k} \dots \check\mu_p}_{\nu_1 \dots \check\nu_k \dots \nu_p} \\ &= \delta^{\mu_p}_{\nu_p} \delta^{\mu_1 \dots \mu_{p - 1}}_{\nu_1 \dots \nu_{p-1}} - \sum_{k=1}^{p-1} \delta^{\mu_p}_{\nu_k} \delta^{\mu_1 \dots \mu_{k-1}\, \mu_k\, \mu_{k+1} \dots \mu_{p-1}}_{\nu_1 \dots \nu_{k-1}\, \nu_p\, \nu_{k+1} \dots \nu_{p-1}}, \end{align}</math> where the caron, <math>\check{}</math>, indicates an index that is omitted from the sequence. When <math>p=n</math> (the dimension of the vector space), in terms of the [[Levi-Civita symbol]]: <math display="block">\delta^{\mu_1 \dots \mu_n}_{\nu_1 \dots \nu_n} = \varepsilon^{\mu_1 \dots \mu_n}\varepsilon_{\nu_1 \dots \nu_n}\,.</math> More generally, for <math>m=n-p</math>, using the [[Einstein summation convention]]: <math display="block">\delta^{\mu_1 \dots \mu_p}_{\nu_1 \dots \nu_p} = \tfrac{1}{m!} \varepsilon^{\kappa_1 \dots \kappa_m \mu_1 \dots \mu_p}\varepsilon_{\kappa_1 \dots \kappa_m \nu_1 \dots \nu_p}\,.</math> === Contractions of the generalized Kronecker delta === Kronecker Delta contractions depend on the dimension of the space. For example, <math display="block">\delta^{\nu_1}_{\mu_1} \delta^{\mu_1 \mu_2}_{\nu_1 \nu_2} = (d-1) \delta^{\mu_2}_{\nu_2} ,</math> where {{mvar|d}} is the dimension of the space. From this relation the full contracted delta is obtained as <math display="block">\delta^{\nu_1 \nu_2}_{\mu_1 \mu_2} \delta^{\mu_1 \mu_2}_{\nu_1 \nu_2} = 2d(d-1) .</math> The generalization of the preceding formulas is{{cn|date=January 2023}} <math display="block">\delta^{\nu_1 \dots \nu_n}_{\mu_1 \dots \mu_n} \delta^{\mu_1 \dots \mu_p}_{\nu_1 \dots \nu_p} = n! \frac{(d-p+n)!}{(d-p)!} \delta^{\mu_{n+1} \dots \mu_p}_{\nu_{n+1} \dots \nu_p} .</math> === Properties of the generalized Kronecker delta === The generalized Kronecker delta may be used for [[Antisymmetric tensor#Notation|anti-symmetrization]]: <math display="block">\begin{align} \frac{1}{p!} \delta^{\mu_1 \dots \mu_p}_{\nu_1 \dots \nu_p} a^{\nu_1 \dots \nu_p} &= a^{[ \mu_1 \dots \mu_p ]} , \\ \frac{1}{p!} \delta^{\mu_1 \dots \mu_p}_{\nu_1 \dots \nu_p} a_{\mu_1 \dots \mu_p} &= a_{[ \nu_1 \dots \nu_p ]} . \end{align}</math> From the above equations and the properties of [[anti-symmetric tensor]]s, we can derive the properties of the generalized Kronecker delta: <math display="block">\begin{align} \frac{1}{p!} \delta^{\mu_1 \dots \mu_p}_{\nu_1 \dots \nu_p} a^{[ \nu_1 \dots \nu_p ]} &= a^{[ \mu_1 \dots \mu_p ]} , \\ \frac{1}{p!} \delta^{\mu_1 \dots \mu_p}_{\nu_1 \dots \nu_p} a_{[ \mu_1 \dots \mu_p ]} &= a_{[ \nu_1 \dots \nu_p ]} , \\ \frac{1}{p!} \delta^{\mu_1 \dots \mu_p}_{\nu_1 \dots \nu_p} \delta^{\nu_1 \dots \nu_p}_{\kappa_1 \dots \kappa_p} &= \delta^{\mu_1 \dots \mu_p}_{\kappa_1 \dots \kappa_p} , \end{align}</math> which are the generalized version of formulae written in ''{{section link||Properties}}''. The last formula is equivalent to the [[Cauchy–Binet formula]]. Reducing the order via summation of the indices may be expressed by the identity<ref>{{cite book |first=Sadri |last=Hassani |title=Mathematical Methods: For Students of Physics and Related Fields |edition=2nd |publisher=Springer-Verlag |year=2008 |isbn=978-0-387-09503-5 }}</ref> <math display="block"> \delta^{\mu_1 \dots \mu_s \, \mu_{s+1} \dots \mu_p}_{\nu_1 \dots \nu_s \, \mu_{s+1} \dots \mu_p} = \frac{(n-s)!}{(n-p)!} \delta^{\mu_1 \dots \mu_s}_{\nu_1 \dots \nu_s}.</math> Using both the summation rule for the case <math>p=n</math> and the relation with the Levi-Civita symbol, [[Levi-Civita symbol#n dimensions|the summation rule of the Levi-Civita symbol]] is derived: <math display="block">\delta^{\mu_1 \dots \mu_p}_{\nu_1 \dots \nu_p} = \frac{1}{(n-p)!}\varepsilon^{\mu_1 \dots \mu_p \, \kappa_{p+1} \dots \kappa_n}\varepsilon_{\nu_1 \dots \nu_p \, \kappa_{p+1} \dots \kappa_n}.</math> The 4D version of the last relation appears in Penrose's [[Mathematics of general relativity#Spinor formalism|spinor approach to general relativity]]<ref>{{Cite journal|last=Penrose|first=Roger|date=June 1960|title=A spinor approach to general relativity |url=https://linkinghub.elsevier.com/retrieve/pii/000349166090021X|journal=Annals of Physics|language=en| volume=10|issue=2 |pages=171–201|doi=10.1016/0003-4916(60)90021-X|bibcode=1960AnPhy..10..171P}}</ref> that he later generalized, while he was developing Aitken's diagrams,<ref>{{Cite book|last=Aitken|first=Alexander Craig|title=Determinants and Matrices|publisher=Oliver and Boyd|year=1958|location=UK}}</ref> to become part of the technique of [[Penrose graphical notation]].<ref>[[Roger Penrose]], "Applications of negative dimensional tensors," in ''Combinatorial Mathematics and its Applications'', Academic Press (1971).</ref> Also, this relation is extensively used in [[S-duality]] theories, especially when written in the language of [[Differential form|differential forms]] and [[Hodge star operator#Duality|Hodge duals]].
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Kronecker delta
(section)
Add topic