Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Gaussian quadrature
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== General formula for the weights ==== The weights can be expressed as {{NumBlk|:|<math>w_{i} = \frac{a_{n}}{a_{n-1}} \frac{\int_{a}^{b} \omega(x) p_{n-1}(x)^2 dx}{p'_{n}(x_{i}) p_{n-1}(x_{i})}</math>|{{EquationRef|1}}}} where <math>a_{k}</math> is the coefficient of <math>x^{k}</math> in <math>p_{k}(x)</math>. To prove this, note that using [[Lagrange interpolation]] one can express {{math|''r''(''x'')}} in terms of <math>r(x_{i})</math> as <math display="block">r(x) = \sum_{i=1}^{n} r(x_{i}) \prod_{\begin{smallmatrix} 1 \leq j \leq n \\ j \neq i \end{smallmatrix}}\frac{x-x_{j}}{x_{i}-x_{j}}</math> because {{math|''r''(''x'')}} has degree less than {{mvar|n}} and is thus fixed by the values it attains at {{mvar|n}} different points. Multiplying both sides by {{math|''ω''(''x'')}} and integrating from {{mvar|a}} to {{mvar|b}} yields <math display="block">\int_{a}^{b}\omega(x)r(x)dx = \sum_{i=1}^{n} r(x_{i}) \int_{a}^{b}\omega(x)\prod_{\begin{smallmatrix} 1 \leq j \leq n \\ j \neq i \end{smallmatrix}} \frac{x-x_{j}}{x_{i}-x_{j}}dx</math> The weights {{mvar|w<sub>i</sub>}} are thus given by <math display="block">w_{i} = \int_{a}^{b}\omega(x)\prod_{\begin{smallmatrix}1\leq j\leq n\\j\neq i\end{smallmatrix}}\frac{x-x_{j}}{x_{i}-x_{j}}dx</math> This integral expression for <math>w_{i}</math> can be expressed in terms of the orthogonal polynomials <math>p_{n}(x)</math> and <math>p_{n-1}(x)</math> as follows. We can write <math display="block"> \prod_{\begin{smallmatrix} 1 \leq j \leq n \\ j \neq i \end{smallmatrix}} \left(x-x_{j}\right) = \frac{\prod_{1\leq j\leq n} \left(x - x_{j}\right)}{x-x_{i}} = \frac{p_{n}(x)}{a_{n}\left(x-x_{i}\right)}</math> where <math>a_{n}</math> is the coefficient of <math>x^n</math> in <math>p_{n}(x)</math>. Taking the limit of {{mvar|x}} to <math>x_{i}</math> yields using L'Hôpital's rule <math display="block"> \prod_{\begin{smallmatrix} 1 \leq j \leq n \\ j \neq i \end{smallmatrix}} \left(x_{i}-x_{j}\right) = \frac{p'_{n}(x_{i})}{a_{n}}</math> We can thus write the integral expression for the weights as {{NumBlk|:|<math>w_{i} = \frac{1}{p'_{n}(x_{i})}\int_{a}^{b}\omega(x)\frac{p_{n}(x)}{x-x_{i}}dx</math>|{{EquationRef|2}}}} In the integrand, writing <math display="block">\frac{1}{x-x_i} = \frac{1 - \left(\frac{x}{x_i}\right)^{k}}{x - x_i} + \left(\frac{x}{x_i}\right)^{k} \frac{1}{x - x_i}</math> yields <math display="block">\int_a^b\omega(x)\frac{x^kp_n(x)}{x-x_i}dx = x_i^k \int_{a}^{b}\omega(x)\frac{p_n(x)}{x-x_i}dx</math> provided <math>k \leq n</math>, because <math display="block">\frac{1-\left(\frac{x}{x_{i}}\right)^{k}}{x-x_{i}}</math> is a polynomial of degree {{math|''k'' − 1}} which is then orthogonal to <math>p_{n}(x)</math>. So, if {{math|''q''(''x'')}} is a polynomial of at most nth degree we have <math display="block">\int_{a}^{b}\omega(x)\frac{p_{n}(x)}{x-x_{i}} dx = \frac{1}{q(x_{i})} \int_{a}^{b} \omega(x)\frac{q(x) p_n(x)}{x-x_{i}}dx </math> We can evaluate the integral on the right hand side for <math>q(x) = p_{n-1}(x)</math> as follows. Because <math>\frac{p_{n}(x)}{x-x_{i}}</math> is a polynomial of degree {{math|''n'' − 1}}, we have <math display="block">\frac{p_{n}(x)}{x-x_{i}} = a_{n}x^{n-1} + s(x)</math> where {{math|''s''(''x'')}} is a polynomial of degree <math>n - 2</math>. Since {{math|''s''(''x'')}} is orthogonal to <math>p_{n-1}(x)</math> we have <math display="block">\int_{a}^{b}\omega(x)\frac{p_{n}(x)}{x-x_{i}}dx=\frac{a_{n}}{p_{n-1}(x_{i})} \int_{a}^{b}\omega(x)p_{n-1}(x)x^{n-1}dx </math> We can then write <math display="block">x^{n-1} = \left(x^{n-1} - \frac{p_{n-1}(x)}{a_{n-1}}\right) + \frac{p_{n-1}(x)}{a_{n-1}}</math> The term in the brackets is a polynomial of degree <math>n - 2</math>, which is therefore orthogonal to <math>p_{n-1}(x)</math>. The integral can thus be written as <math display="block">\int_{a}^{b}\omega(x)\frac{p_{n}(x)}{x-x_{i}}dx = \frac{a_{n}}{a_{n-1} p_{n-1}(x_{i})} \int_{a}^{b}\omega(x) p_{n-1}(x)^{2} dx </math> According to equation ({{EquationNote|2}}), the weights are obtained by dividing this by <math>p'_{n}(x_{i})</math> and that yields the expression in equation ({{EquationNote|1}}). <math>w_{i}</math> can also be expressed in terms of the orthogonal polynomials <math>p_{n}(x)</math> and now <math>p_{n+1}(x)</math>. In the 3-term recurrence relation <math>p_{n+1}(x_{i}) = (a) p_{n}(x_{i}) + (b) p_{n-1}(x_{i})</math> the term with <math>p_{n}(x_{i})</math> vanishes, so <math>p_{n-1}(x_{i})</math> in Eq. (1) can be replaced by <math display="inline">\frac{1}{b} p_{n+1} \left(x_i\right)</math>.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Gaussian quadrature
(section)
Add topic