Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Gamma
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Uppercase=== The uppercase letter <math>\Gamma</math> is used as a symbol for: *In mathematics, the [[gamma function]] (usually written as <math>\Gamma</math>-function) is an extension of the [[factorial]] to [[complex number]]s<ref>{{Cite web |last=Weisstein |first=Eric W. |title=Gamma Function |url=https://mathworld.wolfram.com/GammaFunction.html |access-date=2025-01-22 |website=mathworld.wolfram.com |language=en |quote=The (complete) gamma function Γ(n) is defined to be an extension of the factorial to complex and real number arguments.}}</ref><ref>{{Cite web |title=DLMF: §5.1 Special Notation ‣ Notation ‣ Chapter 5 Gamma Function |url=https://dlmf.nist.gov/5.1 |access-date=2025-01-31 |website=dlmf.nist.gov}}</ref> *In mathematics, the [[Incomplete gamma function|upper incomplete gamma function]]<ref>{{Cite web |last=Weisstein |first=Eric W. |title=Incomplete Gamma Function |url=https://mathworld.wolfram.com/IncompleteGammaFunction.html |access-date=2025-01-22 |website=mathworld.wolfram.com |language=en}}</ref> *The [[Christoffel symbols]] in differential geometry<ref>{{Cite book |last=Baumann |first=Gerd |title=Mathematica for theoretical physics |date=2005 |publisher=Springer |isbn=978-0-387-01674-0 |edition=2nd |location=New York |page=731}}</ref><ref>{{Cite web |last=Weisstein |first=Eric W. |title=Christoffel Symbol of the First Kind |url=https://mathworld.wolfram.com/ChristoffelSymboloftheFirstKind.html |access-date=2025-01-22 |website=mathworld.wolfram.com |language=en}}</ref> *In probability theory and statistics, the [[gamma distribution]] is a two-parameter family of continuous probability distributions.<ref>{{Cite web |last=Weisstein |first=Eric W. |title=Gamma Distribution |url=https://mathworld.wolfram.com/GammaDistribution.html |access-date=2025-01-22 |website=mathworld.wolfram.com |language=en}}</ref> *In [[solid-state physics]], the center of the [[Brillouin zone]] *[[circulation (fluid dynamics)|Circulation]] in [[fluid mechanics]] *As [[reflection coefficient]] in physics and electrical engineering<ref>{{Cite book |title=Electromagnetic Theory for Microwaves and Optoelectronics |date=2008 |publisher=Springer-Verlag Berlin Heidelberg |isbn=978-3-540-74295-1 |editor-last=Zhang |editor-first=Keqian |edition=2nd |series=SpringerLink Bücher |location=Berlin, Heidelberg |page=82 |quote=The reflection coefficient Γis real when medium 1 and medium 2 are both lossless media,… |editor-last2=Li |editor-first2=Dejie}}</ref> *The tape alphabet of a [[Turing machine]]<ref>{{Cite book |last=Arora |first=Sanjeev |title=Computational complexity: A Modern Approach |last2=Barak |first2=Boaz |date=2016 |publisher=Cambridge University Press |isbn=978-0-521-42426-4 |edition=4th printing 2016 |location=New York |pages=12 |quote=A tape is an infinite one-directional line of cells, each of which can hold a symbol from a finite set Γcalled the alphabet of the machine.}}</ref> *The [[Feferman–Schütte ordinal]] <math>\Gamma_0</math><ref>{{Cite book |last=Kahle |first=Reinhard |title=The legacy of Kurt Schütte |last2=Rathjen |first2=Michael |date=2020 |publisher=Springer |isbn=978-3-030-49423-0 |location=Cham |pages=41 |quote=The Veblen approach was quite sufficient even for the ordinal, now known as the Feferman–Schütte ordinal, Γ{{sub|0}} for predictive analysis}}</ref> *[[Congruence subgroup]]s of the modular group of other arithmetic groups *One of the [[Greeks (finance)|Greeks in mathematical finance]]
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Gamma
(section)
Add topic