Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Fourier-transform spectroscopy
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Pulsed Fourier-transform spectrometer== A pulsed Fourier-transform spectrometer does not employ transmittance techniques{{definition_needed|reason=What is a transmittance technique?|date=August 2016}}. In the most general description of pulsed FT spectrometry, a sample is exposed to an energizing event which causes a periodic response. The frequency of the periodic response, as governed by the field conditions in the spectrometer, is indicative of the measured properties of the analyte. ===Examples of pulsed Fourier-transform spectrometry=== In magnetic spectroscopy ([[Electron paramagnetic resonance|EPR]], [[Nuclear magnetic resonance|NMR]]), a microwave pulse (EPR) or a radio frequency pulse (NMR) in a strong ambient magnetic field is used as the energizing event. This turns the magnetic particles at an angle to the ambient field, resulting in gyration. The gyrating spins then induce a periodic current in a detector coil. Each spin exhibits a characteristic frequency of gyration (relative to the field strength) which reveals information about the analyte. In [[Fourier-transform mass spectrometry]], the energizing event is the injection of the charged sample into the strong electromagnetic field of a cyclotron. These particles travel in circles, inducing a current in a fixed coil on one point in their circle. Each traveling particle exhibits a characteristic cyclotron frequency-field ratio revealing the masses in the sample. ===Free induction decay=== Pulsed FT spectrometry gives the advantage of requiring a single, time-dependent measurement which can easily deconvolute a set of similar but distinct signals. The resulting composite signal, is called a ''free induction decay,'' because typically the signal will decay due to inhomogeneities in sample frequency, or simply unrecoverable loss of signal due to entropic loss of the property being measured. === Nanoscale spectroscopy with pulsed sources === Pulsed sources allow for the utilization of Fourier-transform spectroscopy principles in [[Near-field scanning optical microscope|scanning near-field optical microscopy]] techniques. Particularly in [[nano-FTIR]], where the scattering from a sharp probe-tip is used to perform spectroscopy of samples with nanoscale spatial resolution, a high-power illumination from pulsed infrared lasers makes up for a relatively small [[Scattering cross section|scattering efficiency]] (often < 1%) of the probe.<ref>{{Cite journal|last1=Hegenbarth|first1=R|last2=Steinmann|first2=A|last3=Mastel|first3=S|last4=Amarie|first4=S|last5=Huber|first5=A J|last6=Hillenbrand|first6=R|last7=Sarkisov|first7=S Y|last8=Giessen|first8=H|title=High-power femtosecond mid-IR sources for s-SNOM applications|url=http://stacks.iop.org/2040-8986/16/i=9/a=094003?key=crossref.3eb2b21f107d58830fc324d0ec18d34e|journal=Journal of Optics|year=2014|volume=16|issue=9|page=094003|doi=10.1088/2040-8978/16/9/094003|bibcode=2014JOpt...16i4003H|s2cid=49192831}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Fourier-transform spectroscopy
(section)
Add topic