Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Euler's constant
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Properties == ===Irrationality and transcendence=== The number {{math|''γ''}} has not been proved [[algebraic number|algebraic]] or [[transcendental number|transcendental]]. In fact, it is not even known whether {{math|''γ''}} is [[irrational number|irrational]]. The ubiquity of {{math|''γ''}} revealed by the large number of equations below and the fact that {{math|{{var|γ}}}} has been called the third most important mathematical constant after [[Pi|{{math|{{var|π}}}}]] and [[E (mathematical constant)|{{math|{{var|e}}}}]]<ref>{{Cite web |title=Eulers Constant |url=https://num.math.uni-goettingen.de/~skraemer/gamma.html |access-date=2024-10-19 |website=num.math.uni-goettingen.de}}</ref><ref name=":7">{{Cite book |last=Finch |first=Steven R. |url=https://books.google.com/books?id=Pl5I2ZSI6uAC |title=Mathematical Constants |date=2003-08-18 |publisher=Cambridge University Press |isbn=978-0-521-81805-6 |language=en}}</ref> makes the irrationality of {{math|''γ''}} a major open question in mathematics.<ref name=":3" /><ref>{{Cite web |last=Waldschmidt |first=Michel |date=2023 |title=Some of the most famous open problems in number theory |url=https://webusers.imj-prg.fr/~michel.waldschmidt/articles/pdf/OpenPbsNT.pdf}}</ref>{{r|Sondow2003a}}<ref name=":6">{{Cite book |last1=Conway |first1=John H. |url=https://books.google.com/books?id=0--3rcO7dMYC |title=The Book of Numbers |last2=Guy |first2=Richard |date=1998-03-16 |publisher=Springer Science & Business Media |isbn=978-0-387-97993-9 |language=en}}</ref> {{unsolved|mathematics|Is Euler's constant irrational? If so, is it transcendental?}} However, some progress has been made. In 1959 Andrei Shidlovsky proved that at least one of Euler's constant {{math|''γ''}} and the [[Euler–Gompertz constant|Gompertz constant]] {{math|''δ''}} is irrational;{{r|Aptekarev2009}}<ref name=":2">{{Cite web |last=Waldschmidt |first=Michel |date=2023 |title=On Euler's Constant |url=https://webusers.imj-prg.fr/~michel.waldschmidt/articles/pdf/EulerConstant.pdf |place=Sorbonne Université, Institut de Mathématiques de Jussieu, Paris}}</ref> [[Tanguy Rivoal]] proved in 2012 that at least one of them is transcendental.{{r|Rivoal2012}} [[Kurt Mahler]] showed in 1968 that the number <math display=inline>\frac \pi 2\frac{Y_0(2)}{J_0(2)}-\gamma</math> is transcendental, where <math>J_0</math> and <math>Y_0</math> are the usual [[Bessel function]]s.{{r|Mahler1968}}{{sfn|Lagarias|2013}} It is known that the [[Transcendental extension|transcendence degree]] of the field <math>\mathbb Q(e,\gamma,\delta)</math> is at least two.{{sfn|Lagarias|2013}} In 2010, [[M. Ram Murty]] and N. Saradha showed that at most one of the Euler-Lehmer constants, i. e. the numbers of the form <math display="block">\gamma(a,q) = \lim_{n\rightarrow\infty}\left( - \frac{\log{(a+nq})}{q} + \sum_{k=0}^n{\frac{1}{a+kq}}\right)</math> is algebraic, if {{math|''q'' ≥ 2}} and {{math|1 ≤ ''a'' < ''q''}}; this family includes the special case {{math|1=''γ''(2,4) = ''γ''/4}}.{{sfn|Lagarias|2013}}{{r|RamMurtySaradha2010}} Using the same approach, in 2013, M. Ram Murty and A. Zaytseva showed that the generalized Euler constants have the same property, {{sfn|Lagarias|2013}}{{r|MurtyZaytseva2013}} <ref>{{Cite journal |last1=Diamond |first1=H. G. |last2=Ford |first2=K. |title=Generalized Euler constants |journal=Mathematical Proceedings of the Cambridge Philosophical Society |date=2008 |volume=145 |issue=1 |pages=27–41 |publisher=[[Cambridge University Press]] |doi=10.1017/S0305004108001187 |arxiv=math/0703508|bibcode=2008MPCPS.145...27D }}</ref> where the generalized Euler constant are defined as <math display="block">\gamma(\Omega) = \lim_{x\rightarrow\infty} \left( \sum_{n=1}^x \frac{1_\Omega(n)}{n} - \log x \cdot \lim_{x\rightarrow\infty} \frac{ \sum_{n=1}^x 1_\Omega (n) }{x} \right),</math> where {{tmath|\Omega}} is a fixed list of prime numbers, <math>1_\Omega(n) =0</math> if at least one of the primes in {{tmath|\Omega}} is a prime factor of {{tmath|n}}, and <math>1_\Omega(n) =1</math> otherwise. In particular, {{tmath|1=\gamma(\empty)=\gamma}}. Using a [[continued fraction]] analysis, Papanikolaou showed in 1997 that if {{math|''γ''}} is [[rational number|rational]], its denominator must be greater than 10<sup>244663</sup>.{{r|HaiblePapanikolaou1998|Papanikolaou1997}} If {{math|{{var|e}}{{i sup|1px|{{var|γ}}}}}} is a rational number, then its denominator must be greater than 10<sup>15000</sup>.{{sfn|Lagarias|2013}} Euler's constant is conjectured not to be an [[Period (algebraic geometry)|algebraic period]],{{sfn|Lagarias|2013}} but the values of its first 10<sup>9</sup> decimal digits seem to indicate that it could be a [[normal number]].<ref>{{Cite web |last=Weisstein |first=Eric W. |title=Euler-Mascheroni Constant Digits |url=https://mathworld.wolfram.com/Euler-MascheroniConstantDigits.html |access-date=2024-10-19 |website=mathworld.wolfram.com |language=en}}</ref> === Continued fraction === The simple [[continued fraction]] expansion of Euler's constant is given by:{{r|OEIS_A002852}} :<math>\gamma=0+\cfrac{1}{1+\cfrac{1}{1+\cfrac{1}{2+\cfrac{1}{1+\cfrac{1}{2+\cfrac{1}{1+\cfrac{1}{4+\dots}}}}}}}</math> which has no ''apparent'' pattern. It is known to have at least 16,695,000,000 terms,{{r|OEIS_A002852}} and it has infinitely many terms [[if and only if]] {{mvar|γ}} is irrational. [[File:KhinchinBeispiele.svg|thumb|The Khinchin limits for <math>\pi</math> (red), <math>\gamma</math> (blue) and <math>\sqrt[3]{2}</math> (green).|350x350px]] Numerical evidence suggests that both Euler's constant {{math|{{var|γ}}}} as well as the constant {{math|{{var|e}}{{i sup|1px|{{var|γ}}}}}} are among the numbers for which the [[geometric mean]] of their simple continued fraction terms converges to [[Khinchin's constant]]. Similarly, when <math>p_n/q_n</math> are the convergents of their respective continued fractions, the limit <math>\lim_{n\to\infty}q_n^{1/n}</math> appears to converge to [[Lévy's constant]] in both cases.<ref name=":4">{{Cite journal |last=Brent |first=Richard P. |date=1977 |title=Computation of the Regular Continued Fraction for Euler's Constant |url=https://www.jstor.org/stable/2006010 |journal=Mathematics of Computation |volume=31 |issue=139 |pages=771–777 |doi=10.2307/2006010 |jstor=2006010 |issn=0025-5718}}</ref> However neither of these limits has been proven.<ref name=":0">{{Cite web |last=Weisstein |first=Eric W. |title=Euler-Mascheroni Constant Continued Fraction |url=https://mathworld.wolfram.com/Euler-MascheroniConstantContinuedFraction.html |access-date=2024-09-23 |website=mathworld.wolfram.com |language=en}}</ref> There also exists a generalized continued fraction for Euler's constant.<ref>{{Citation |last1=Pilehrood |first1=Khodabakhsh Hessami |title=On a continued fraction expansion for Euler's constant |date=2013-12-29 |last2=Pilehrood |first2=Tatiana Hessami|arxiv=1010.1420 }}</ref> A good simple [[approximation]] of {{math|{{var|γ}}}} is given by the [[Multiplicative inverse|reciprocal]] of the [[square root of 3]] or about 0.57735:<ref>{{Cite web |last=Weisstein |first=Eric W. |title=Euler-Mascheroni Constant Approximations |url=https://mathworld.wolfram.com/Euler-MascheroniConstantApproximations.html |access-date=2024-10-19 |website=mathworld.wolfram.com |language=en}}</ref> :<math>\frac1\sqrt {3}=0+\cfrac{1}{1+\cfrac{1}{1+\cfrac{1}{2+\cfrac{1}{1+\cfrac{1}{2+\cfrac{1}{1+\cfrac{1}{2+\dots}}}}}}}</math> with the difference being about 1 in 7,429.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Euler's constant
(section)
Add topic