Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Dot product
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Properties== The dot product fulfills the following properties if <math>\mathbf{a}</math>, <math>\mathbf{b}</math>, <math>\mathbf{c}</math> and <math>\mathbf{d}</math> are real [[vector (geometry)|vectors]] and <math>\alpha</math>, <math>\beta</math>, <math>\gamma</math> and <math>\delta</math> are [[scalar (mathematics)|scalars]].<ref name="Lipschutz2009" /><ref name="Spiegel2009" /> ; [[Commutative]] : <math display="block"> \mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a} ,</math> which follows from the definition (<math>\theta</math> is the angle between <math>\mathbf{a}</math> and <math>\mathbf{b}</math>):<ref>{{cite web|last=Nykamp|first=Duane|title=The dot product|url=https://mathinsight.org/dot_product|access-date=September 6, 2020|website=Math Insight}}</ref> <math display="block"> \mathbf{a} \cdot \mathbf{b} = \left\| \mathbf{a} \right\| \left\| \mathbf{b} \right\| \cos \theta = \left\| \mathbf{b} \right\| \left\| \mathbf{a} \right\| \cos \theta = \mathbf{b} \cdot \mathbf{a} .</math> The commutative property can also be easily proven with the algebraic definition, and in [[Inner product space|more general spaces]] (where the notion of angle might not be geometrically intuitive but an analogous product can be defined) the angle between two vectors can be defined as <math display="block"> \theta = \operatorname{arccos}\left( \frac{\mathbf{a}\cdot\mathbf{b}}{\left\|\mathbf{a}\right\| \left\|\mathbf{b}\right\|} \right). </math> ; [[bilinear form|Bilinear]] (additive, distributive and scalar-multiplicative in both arguments) : <math display="block"> \begin{align} (\alpha \mathbf{a} + \beta\mathbf{b})&\cdot (\gamma\mathbf{c}+\delta\mathbf{d}) \\ &=\alpha\gamma(\mathbf{a}\cdot\mathbf{c}) + \alpha\delta(\mathbf{a}\cdot\mathbf{d}) +\beta\gamma(\mathbf{b}\cdot\mathbf{c}) +\beta\delta(\mathbf{b}\cdot\mathbf{d}) . \end{align}</math> ; Not [[associative]] : Because the dot product is not defined between a scalar <math>\mathbf{a}\cdot\mathbf{b}</math> and a vector <math>\mathbf{c},</math> associativity is meaningless.<ref>Weisstein, Eric W. "Dot Product". From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/DotProduct.html</ref> However, bilinearity implies <math display="block">c (\mathbf{a} \cdot \mathbf{b}) = (c\mathbf{a})\cdot\mathbf{b} = \mathbf{a}\cdot(c\mathbf{b}).</math> This property is sometimes called the "associative law for scalar and dot product",<ref name="BanchoffWermer1983">{{cite book|author1=T. Banchoff|author2=J. Wermer | title=Linear Algebra Through Geometry|year=1983|publisher=Springer Science & Business Media| isbn=978-1-4684-0161-5 | page=12| url=https://archive.org/details/linearalgebrathr00banc_0/page/12/mode/2up}}</ref> and one may say that "the dot product is associative with respect to scalar multiplication".<ref name="BedfordFowler2008">{{cite book | author1=A. Bedford|author2=Wallace L. Fowler|title=Engineering Mechanics: Statics|year=2008|publisher=Prentice Hall | isbn=978-0-13-612915-8 | edition=5th | page=60}}</ref> ; [[Orthogonal]] : Two non-zero vectors <math>\mathbf{a}</math> and <math>\mathbf{b}</math> are ''orthogonal'' if and only if <math>\mathbf{a} \cdot \mathbf{b} = 0</math>. ; No [[cancellation law|cancellation]] : Unlike multiplication of ordinary numbers, where if <math>ab=ac</math>, then <math>b</math> always equals <math>c</math> unless <math>a</math> is zero, the dot product does not obey the [[cancellation law]]: {{pb}} If <math>\mathbf{a}\cdot\mathbf{b}=\mathbf{a}\cdot\mathbf{c}</math> and <math>\mathbf{a}\neq\mathbf{0}</math>, then we can write: <math>\mathbf{a}\cdot(\mathbf{b}-\mathbf{c}) = 0</math> by the [[distributive law]]; the result above says this just means that <math>\mathbf{a}</math> is perpendicular to <math>(\mathbf{b}-\mathbf{c})</math>, which still allows <math>(\mathbf{b}-\mathbf{c})\neq\mathbf{0}</math>, and therefore allows <math>\mathbf{b}\neq\mathbf{c}</math>. ; [[Product rule]] : If <math>\mathbf{a}</math> and <math>\mathbf{b}</math> are vector-valued [[differentiable function]]s, then the derivative ([[Notation for differentiation#Lagrange's notation|denoted by a prime]] <math>{}'</math>) of <math>\mathbf{a}\cdot\mathbf{b}</math> is given by the rule <math display="block">(\mathbf{a}\cdot\mathbf{b})' = \mathbf{a}'\cdot\mathbf{b} + \mathbf{a}\cdot\mathbf{b}'.</math> === Application to the law of cosines === [[File:Dot product cosine rule.svg|100px|thumb|Triangle with vector edges '''a''' and '''b''', separated by angle ''ΞΈ'']] {{main|Law of cosines}} Given two vectors <math>{\color{red}\mathbf{a}}</math> and <math>{\color{blue}\mathbf{b}}</math> separated by angle <math>\theta</math> (see the upper image), they form a triangle with a third side <math>{\color{orange}\mathbf{c}} = {\color{red}\mathbf{a}} - {\color{blue}\mathbf{b}}</math>. Let <math>\color{red}a</math>, <math>\color{blue}b</math> and <math>\color{orange}c</math> denote the lengths of <math>{\color{red}\mathbf{a}}</math>, <math>{\color{blue}\mathbf{b}}</math>, and <math>{\color{orange}\mathbf{c}}</math>, respectively. The dot product of this with itself is: <math display="block"> \begin{align} \mathbf{\color{orange}c} \cdot \mathbf{\color{orange}c} & = ( \mathbf{\color{red}a} - \mathbf{\color{blue}b}) \cdot ( \mathbf{\color{red}a} - \mathbf{\color{blue}b} ) \\ & = \mathbf{\color{red}a} \cdot \mathbf{\color{red}a} - \mathbf{\color{red}a} \cdot \mathbf{\color{blue}b} - \mathbf{\color{blue}b} \cdot \mathbf{\color{red}a} + \mathbf{\color{blue}b} \cdot \mathbf{\color{blue}b} \\ & = {\color{red}a}^2 - \mathbf{\color{red}a} \cdot \mathbf{\color{blue}b} - \mathbf{\color{red}a} \cdot \mathbf{\color{blue}b} + {\color{blue}b}^2 \\ & = {\color{red}a}^2 - 2 \mathbf{\color{red}a} \cdot \mathbf{\color{blue}b} + {\color{blue}b}^2 \\ {\color{orange}c}^2 & = {\color{red}a}^2 + {\color{blue}b}^2 - 2 {\color{red}a} {\color{blue}b} \cos \mathbf{\color{purple}\theta} \\ \end{align} </math> which is the [[law of cosines]]. {{clear}}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Dot product
(section)
Add topic