Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Divergence theorem
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===For compact Riemannian manifolds with boundary=== We are going to prove the following:{{citation needed|date=May 2024}} {{math theorem|math_statement= Let <math>\overline{\Omega}</math> be a <math>C^2</math> compact manifold with boundary with <math>C^1</math> metric tensor <math>g</math>. Let <math>\Omega</math> denote the manifold interior of <math>\overline{\Omega}</math> and let <math>\partial \Omega</math> denote the manifold boundary of <math>\overline{\Omega}</math>. Let <math>(\cdot, \cdot)</math> denote <math>L^2(\overline{\Omega})</math> inner products of functions and <math>\langle \cdot, \cdot \rangle</math> denote inner products of vectors. Suppose <math>u \in C^{1}(\overline{\Omega}, \mathbb{R})</math> and <math>X</math> is a <math>C^1</math> vector field on <math>\overline{\Omega}</math>. Then <math display="block"> (\operatorname{grad} u, X) = -(u, \operatorname{div} X) + \int_{\partial \Omega}u\langle X, N \rangle\,dS, </math> where <math>N</math> is the outward-pointing unit normal vector to <math>\partial \Omega</math>. }} '''Proof of Theorem.''' <ref name="Taylor 2011 p. "> {{cite book |last=Taylor |first=Michael E. |title=Applied Mathematical Sciences |chapter=Partial Differential Equations I |publisher=Springer New York |publication-place=New York, NY |year=2011 |volume=115 |isbn=978-1-4419-7054-1 |issn=0066-5452 |doi=10.1007/978-1-4419-7055-8 |pages=178β179}} </ref> We use the Einstein summation convention. By using a partition of unity, we may assume that <math>u</math> and <math>X</math> have compact support in a coordinate patch <math>O \subset \overline{\Omega}</math>. First consider the case where the patch is disjoint from <math>\partial \Omega</math>. Then <math>O</math> is identified with an open subset of <math>\mathbb{R}^n</math> and integration by parts produces no boundary terms: <math display="block"> \begin{align} (\operatorname{grad} u, X) &= \int_{O}\langle \operatorname{grad} u, X \rangle \sqrt{g}\,dx \\ &= \int_{O}\partial_j u X^j \sqrt{g}\,dx \\ &= -\int_{O}u \partial_j(\sqrt{g}X^j)\,dx \\ &= -\int_{O} u \frac{1}{\sqrt{g}}\partial_j(\sqrt{g}X^j)\sqrt{g}\,dx \\ &= (u, -\frac{1}{\sqrt{g}}\partial_j(\sqrt{g}X^j)) \\ &= (u, -\operatorname{div} X). \end{align} </math> In the last equality we used the Voss-Weyl coordinate formula for the divergence, although the preceding identity could be used to define <math>-\operatorname{div}</math> as the formal adjoint of <math>\operatorname{grad}</math>. Now suppose <math>O</math> intersects <math>\partial \Omega</math>. Then <math>O</math> is identified with an open set in <math>\mathbb{R}_{+}^n = \{x \in \mathbb{R}^n : x_n \geq 0\}</math>. We zero extend <math>u</math> and <math>X</math> to <math>\mathbb{R}_+^n</math> and perform integration by parts to obtain <math display="block"> \begin{align} (\operatorname{grad} u, X) &= \int_{O}\langle \operatorname{grad} u, X \rangle \sqrt{g}\,dx \\ &= \int_{\mathbb{R}_+^n}\partial_j u X^j \sqrt{g}\,dx \\ &= (u, -\operatorname{div} X) - \int_{\mathbb{R}^{n - 1}}u(x', 0)X^n(x', 0)\sqrt{g(x', 0)}\,dx', \end{align} </math> where <math>dx' = dx_1 \dots dx_{n - 1}</math>. By a variant of the [[straightening theorem for vector fields]], we may choose <math>O</math> so that <math>\frac{\partial}{\partial x_n}</math> is the inward unit normal <math>-N</math> at <math>\partial \Omega</math>. In this case <math>\sqrt{g(x', 0)}\,dx' = \sqrt{g_{\partial \Omega}(x')}\,dx' = dS</math> is the volume element on <math>\partial \Omega</math> and the above formula reads <math display="block"> (\operatorname{grad} u, X) = (u, -\operatorname{div} X) + \int_{\partial \Omega}u\langle X, N \rangle \,dS. </math> This completes the proof.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Divergence theorem
(section)
Add topic