Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Diophantine set
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Further applications== Matiyasevich's theorem has since been used to prove that many problems from [[calculus]] and [[differential equation]]s are unsolvable. One can also derive the following stronger form of [[Gödel's first incompleteness theorem]] from Matiyasevich's result: :''Corresponding to any given consistent axiomatization of number theory,<ref>More precisely, given a [[arithmetical hierarchy#The arithmetical hierarchy of formulas|<math>\Sigma^0_1</math>-formula]] representing the set of [[Gödel number]]s of [[sentence (mathematical logic)|sentences]] that recursively axiomatize a [[consistency|consistent]] [[theory (mathematical logic)|theory]] extending [[Robinson arithmetic]].</ref> one can explicitly construct a Diophantine equation that has no solutions, but such that this fact cannot be proved within the given axiomatization.'' According to the [[incompleteness theorem]]s, a powerful-enough consistent axiomatic theory is incomplete, meaning the truth of some of its propositions cannot be established within its formalism. The statement above says that this incompleteness must include the solvability of a diophantine equation, assuming that the theory in question is a number theory.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Diophantine set
(section)
Add topic