Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Cramer's rule
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Differential geometry=== ====Ricci calculus==== Cramer's rule is used in the [[Ricci calculus]] in various calculations involving the [[Christoffel symbols]] of the first and second kind.<ref>{{Cite book|title=The Absolute Differential Calculus (Calculus of Tensors)|last=Levi-Civita|first=Tullio|publisher=Dover|year=1926|isbn=9780486634012|pages=111β112}}</ref> In particular, Cramer's rule can be used to prove that the divergence operator on a [[Riemannian manifold]] is invariant with respect to change of coordinates. We give a direct proof, suppressing the role of the Christoffel symbols. Let <math>(M,g)</math> be a Riemannian manifold equipped with [[Manifold#Charts|local coordinates]] <math> (x^1, x^2, \dots, x^n)</math>. Let <math>A=A^i \frac{\partial}{\partial x^i}</math> be a [[vector field]]. We use the [[Einstein notation|summation convention]] throughout. :'''Theorem'''. :''The ''divergence'' of <math>A</math>,'' ::<math> \operatorname{div} A = \frac{1}{\sqrt{\det g}} \frac{\partial}{\partial x^i} \left( A^i \sqrt{\det g} \right),</math> :''is invariant under change of coordinates.'' {{Collapse top|title=''Proof''}} Let <math>(x^1,x^2,\ldots,x^n)\mapsto (\bar x^1,\ldots,\bar x^n)</math> be a [[coordinate transformation]] with [[invertible matrix|non-singular]] [[Jacobian matrix and determinant|Jacobian]]. Then the classical [[Vector field#Coordinate transformation law|transformation laws]] imply that <math>A=\bar A^{k}\frac{\partial}{\partial\bar x^{k}}</math> where <math>\bar A^{k}=\frac{\partial \bar x^{k}}{\partial x^{j}}A^{j}</math>. Similarly, if <math>g=g_{mk}\,dx^{m}\otimes dx^{k}=\bar{g}_{ij}\,d\bar x^{i}\otimes d\bar x^{j}</math>, then <math>\bar{g}_{ij}=\,\frac{\partial x^{m}}{\partial\bar x^{i}}\frac{\partial x^{k}}{\partial \bar x^{j}}g_{mk}</math>. Writing this transformation law in terms of matrices yields <math>\bar g=\left(\frac{\partial x}{\partial\bar{x}}\right)^{\text{T}}g\left(\frac{\partial x}{\partial\bar{x}}\right)</math>, which implies <math>\det\bar g=\left(\det\left(\frac{\partial x}{\partial\bar{x}}\right)\right)^{2}\det g</math>. Now one computes :<math>\begin{align} \operatorname{div} A &=\frac{1}{\sqrt{\det g}}\frac{\partial}{\partial x^{i}}\left( A^{i}\sqrt{\det g}\right)\\ &=\det\left(\frac{\partial x}{\partial\bar{x}}\right)\frac{1}{\sqrt{\det\bar g}}\frac{\partial \bar x^k}{\partial x^{i}}\frac{\partial}{\partial\bar x^{k}}\left(\frac{\partial x^{i}}{\partial \bar x^{\ell}}\bar{A}^{\ell}\det\!\left(\frac{\partial x}{\partial\bar{x}}\right)^{\!\!-1}\!\sqrt{\det\bar g}\right). \end{align}</math> In order to show that this equals <math>\frac{1}{\sqrt{\det\bar g}}\frac{\partial}{\partial\bar x^{k}}\left(\bar A^{k}\sqrt{\det\bar{g}}\right)</math>, it is necessary and sufficient to show that :<math>\frac{\partial\bar x^{k}}{\partial x^{i}}\frac{\partial}{\partial\bar x^{k}}\left(\frac{\partial x^{i}}{\partial \bar x^{\ell}}\det\!\left(\frac{\partial x}{\partial\bar{x}}\right)^{\!\!\!-1}\right)=0\qquad\text{for all } \ell, </math> which is equivalent to :<math>\frac{\partial}{\partial \bar x^{\ell}}\det\left(\frac{\partial x}{\partial\bar{x}}\right) =\det\left(\frac{\partial x}{\partial\bar{x}}\right)\frac{\partial\bar x^{k}}{\partial x^{i}}\frac{\partial^{2}x^{i}}{\partial\bar x^{k}\partial\bar x^{\ell}}. </math> Carrying out the differentiation on the left-hand side, we get: :<math>\begin{align} \frac{\partial}{\partial\bar x^{\ell}}\det\left(\frac{\partial x}{\partial\bar{x}}\right) &=(-1)^{i+j}\frac{\partial^{2}x^{i}}{\partial\bar x^{\ell}\partial\bar x^{j}}\det M(i|j)\\ &=\frac{\partial^{2}x^{i}}{\partial\bar x^{\ell}\partial\bar x^{j}}\det\left(\frac{\partial x}{\partial\bar{x}}\right)\frac{(-1)^{i+j}}{\det\left(\frac{\partial x}{\partial\bar{x}}\right)}\det M(i|j)=(\ast), \end{align}</math> where <math>M(i|j)</math> denotes the matrix obtained from <math>\left(\frac{\partial x}{\partial\bar{x}}\right)</math> by deleting the <math>i</math>th row and <math>j</math>th column. But Cramer's Rule says that :<math>\frac{(-1)^{i+j}}{\det\left(\frac{\partial x}{\partial\bar{x}}\right)}\det M(i|j) </math> is the <math>(j,i)</math>th entry of the matrix <math>\left(\frac{\partial \bar{x}}{\partial x}\right)</math>. Thus :<math>(\ast)=\det\left(\frac{\partial x}{\partial\bar{x}}\right)\frac{\partial^{2}x^{i}}{\partial\bar x^{\ell}\partial\bar x^{j}}\frac{\partial\bar x^{j}}{\partial x^{i}},</math> completing the proof. {{Collapse bottom}} ====Computing derivatives implicitly==== Consider the two equations <math>F(x, y, u, v) = 0</math> and <math>G(x, y, u, v) = 0</math>. When ''u'' and ''v'' are independent variables, we can define <math>x = X(u, v)</math> and <math>y = Y(u, v).</math> An equation for <math>\dfrac{\partial x}{\partial u}</math> can be found by applying Cramer's rule. {{Collapse top|title=''Calculation of <math>\dfrac{\partial x}{\partial u}</math>''}} First, calculate the first derivatives of ''F'', ''G'', ''x'', and ''y'': :<math>\begin{align} dF &= \frac{\partial F}{\partial x} dx + \frac{\partial F}{\partial y} dy +\frac{\partial F}{\partial u} du +\frac{\partial F}{\partial v} dv = 0 \\[6pt] dG &= \frac{\partial G}{\partial x} dx + \frac{\partial G}{\partial y} dy +\frac{\partial G}{\partial u} du +\frac{\partial G}{\partial v} dv = 0 \\[6pt] dx &= \frac{\partial X}{\partial u} du + \frac{\partial X}{\partial v} dv \\[6pt] dy &= \frac{\partial Y}{\partial u} du + \frac{\partial Y}{\partial v} dv. \end{align}</math> Substituting ''dx'', ''dy'' into ''dF'' and ''dG'', we have: :<math>\begin{align} dF &= \left(\frac{\partial F}{\partial x} \frac{\partial x}{\partial u} +\frac{\partial F}{\partial y} \frac{\partial y}{\partial u} + \frac{\partial F}{\partial u} \right) du + \left(\frac{\partial F}{\partial x} \frac{\partial x}{\partial v} +\frac{\partial F}{\partial y} \frac{\partial y}{\partial v} +\frac{\partial F}{\partial v} \right) dv = 0 \\ [6pt] dG &= \left(\frac{\partial G}{\partial x} \frac{\partial x}{\partial u} +\frac{\partial G}{\partial y} \frac{\partial y}{\partial u} +\frac{\partial G}{\partial u} \right) du + \left(\frac{\partial G}{\partial x} \frac{\partial x}{\partial v} +\frac{\partial G}{\partial y} \frac{\partial y}{\partial v} +\frac{\partial G}{\partial v} \right) dv = 0. \end{align}</math> Since ''u'', ''v'' are both independent, the coefficients of ''du'', ''dv'' must be zero. So we can write out equations for the coefficients: :<math>\begin{align} \frac{\partial F}{\partial x} \frac{\partial x}{\partial u} +\frac{\partial F}{\partial y} \frac{\partial y}{\partial u} & = -\frac{\partial F}{\partial u} \\[6pt] \frac{\partial G}{\partial x} \frac{\partial x}{\partial u} +\frac{\partial G}{\partial y} \frac{\partial y}{\partial u} & = -\frac{\partial G}{\partial u} \\[6pt] \frac{\partial F}{\partial x} \frac{\partial x}{\partial v} +\frac{\partial F}{\partial y} \frac{\partial y}{\partial v} & = -\frac{\partial F}{\partial v} \\[6pt] \frac{\partial G}{\partial x} \frac{\partial x}{\partial v} +\frac{\partial G}{\partial y} \frac{\partial y}{\partial v} & = -\frac{\partial G}{\partial v}. \end{align}</math> Now, by Cramer's rule, we see that: :<math>\frac{\partial x}{\partial u} = \frac{\begin{vmatrix} -\frac{\partial F}{\partial u} & \frac{\partial F}{\partial y} \\ -\frac{\partial G}{\partial u} & \frac{\partial G}{\partial y}\end{vmatrix}}{\begin{vmatrix}\frac{\partial F}{\partial x} & \frac{\partial F}{\partial y} \\ \frac{\partial G}{\partial x} & \frac{\partial G}{\partial y}\end{vmatrix}}.</math> This is now a formula in terms of two [[Jacobian matrix and determinant|Jacobian]]s: :<math>\frac{\partial x}{\partial u} = -\frac{\left(\frac{\partial (F, G)}{\partial (u, y)}\right)}{\left(\frac{\partial (F, G)}{\partial(x, y)}\right)}.</math> Similar formulas can be derived for <math>\frac{\partial x}{\partial v}, \frac{\partial y}{\partial u}, \frac{\partial y}{\partial v}.</math> {{Collapse bottom}}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Cramer's rule
(section)
Add topic