Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Costas loop
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== QPSK Costas loop == The classical Costas loop can be adapted to [[Phase-shift keying#Quadrature phase-shift keying (QPSK)|QPSK]] modulation for higher data rates.<ref>{{cite patent | country = US | number = 4,085,378 | status = patent | title = QPSK demodulator | pubdate = 1976-11-26 | pridate = 1975-06-11 | invent1 = Carl R. Ryan | invent2 = James H. Stilwell | assign1 = Motorola Solutions Inc. | url = https://patents.google.com/patent/US4085378A/en }}</ref> [[File:QPSK-costas-loop2.png|thumb|left|Classical QPSK Costas loop]] The input [[phase-shift keying#Quadrature phase-shift keying (QPSK)|QPSK]] signal is as follows :<math> m_1(t)\cos\left(\omega_\text{ref} t\right) + m_2(t)\sin\left(\omega_\text{ref} t\right), m_1(t) = \pm 1, m_2(t) = \pm 1. </math> Inputs of low-pass filters LPF1 and LPF2 are :<math>\begin{align} \varphi_1(t) &= \cos\left(\theta_\text{vco}\right)\left(m_1(t)\cos\left(\omega_\text{ref} t\right) + m_2(t)\sin\left(\omega_\text{ref} t\right)\right), \\ \varphi_2(t) &= \sin\left(\theta_\text{vco}\right)\left(m_1(t)\cos\left(\omega_\text{ref} t\right) + m_2(t)\sin\left(\omega_\text{ref} t\right)\right). \end{align}</math> After synchronization, the outputs of LPF1 <math>Q(t)</math> and LPF2 <math>I(t)</math> are used to get demodulated data (<math>m_1(t)</math> and <math>m_2(t)</math>). To adjust the frequency of the VCO to the reference frequency, signals <math>Q(t)</math> and <math>I(t)</math> are limited and cross-multiplied: :<math>u_d(t) = I(t)\sgn(Q(t)) - Q(t)\sgn(I(t)).</math> Then the signal <math>u_d(t)</math> is filtered by the loop filter and forms the tuning signal for the VCO <math>u_\text{LF}(t)</math>, similar to BPSK Costas loop. Thus, QPSK Costas can be described<ref> {{cite journal | title = Tutorial on dynamic analysis of the Costas loop | last1 = Best | first1=R. E. | last2 = Kuznetsov | first2=N. V. | last3 = Leonov | first3=G. A. | last4 = Yuldashev | first4=M. V. | last5 = Yuldashev | first5=R. V. | journal = Annual Reviews in Control | volume = 42 | pages = 27β49 | year = 2016 | publisher = ELSEVIER | doi = 10.1016/j.arcontrol.2016.08.003 | arxiv = 1511.04435 | s2cid = 10703739 }}</ref> by a system of [[ordinary differential equations]]: :<math>\begin{align} \dot{x}_1 &= A_\text{LPF} x_1 + b_\text{LPF}\varphi_1(t),\\ \dot{x}_2 &= A_\text{LPF} x_2 + b_\text{LPF}\varphi_2(t),\\ \dot{x} &= A_\text{LF} x + b_\text{LF}\big(c_\text{LPF}^* x_1\sgn(c_\text{LPF}^* x_2) - c_\text{LPF}^* x_2\sgn(c_\text{LPF}^* x_1)\big),\\ \dot{\theta}_\text{vco} &= \omega_\text{vco}^\text{free} + K_\text{VCO}\Big(c^*_\text{LF} x + h_\text{LF}\big(c_\text{LPF}^* x_1\sgn(c_\text{LPF}^* x_2) - c_\text{LPF}^* x_2\sgn(c_\text{LPF}^* x_1)\big)\Big).\\ \end{align}</math> Here <math>A_\text{LPF}, b_\text{LPF}, c_\text{LPF}</math> are parameters of LPF1 and LPF2 and <math>A_\text{LF}, b_\text{LF}, c_\text{LF}, h_\text{LF}</math> are parameters of the loop filter.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Costas loop
(section)
Add topic