Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Convex hull
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Preservation of topological properties=== [[File:Versiera007.svg|thumb|The [[witch of Agnesi]]. The points on or above the red curve provide an example of a closed set whose convex hull is open (the open [[upper half-plane]]).]] Topologically, the convex hull of an [[open set]] is always itself open, and the convex hull of a compact set is always itself compact. However, there exist closed sets for which the convex hull is not closed.<ref>{{harvtxt|Grünbaum|2003}}, p. 16; {{harvtxt|Lay|1982}}, p. 21; {{harvtxt|Sakuma|1977}}.</ref> For instance, the closed set :<math>\left \{ (x,y) \mathop{\bigg|} y\ge \frac{1}{1+x^2}\right\}</math> (the set of points that lie on or above the [[witch of Agnesi]]) has the open [[upper half-plane]] as its convex hull.<ref>This example is given by {{harvtxt|Talman|1977}}, Remark 2.6.</ref> The compactness of convex hulls of compact sets, in finite-dimensional Euclidean spaces, is generalized by the [[Krein–Smulian theorem]], according to which the closed convex hull of a weakly compact subset of a [[Banach space]] (a subset that is compact under the [[weak topology]]) is weakly compact.{{sfnp|Whitley|1986}}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Convex hull
(section)
Add topic