Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Conjunctive normal form
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Other approaches=== Since all propositional formulas can be converted into an equivalent formula in conjunctive normal form, proofs are often based on the assumption that all formulae are CNF. However, in some cases this conversion to CNF can lead to an exponential explosion of the formula. For example, translating the non-CNF formula <math display="block">(X_1 \wedge Y_1) \vee (X_2 \wedge Y_2) \vee \ldots \vee (X_n \wedge Y_n)</math> into CNF produces a formula with <math>2^n</math> clauses: <math display="block">(X_1 \vee X_2 \vee \ldots \vee X_n) \wedge (Y_1 \vee X_2 \vee \ldots \vee X_n) \wedge (X_1 \vee Y_2 \vee \ldots \vee X_n) \wedge (Y_1 \vee Y_2 \vee \ldots \vee X_n) \wedge \ldots \wedge (Y_1 \vee Y_2 \vee \ldots \vee Y_n).</math> Each clause contains either <math>X_i</math> or <math>Y_i</math> for each <math>i</math>. There exist transformations into CNF that avoid an exponential increase in size by preserving [[Boolean satisfiability problem|satisfiability]] rather than [[logical equivalence|equivalence]].{{sfn|Tseitin |1968}}{{sfn|Jackson|Sheridan|2004}} These transformations are guaranteed to only linearly increase the size of the formula, but introduce new variables. For example, the above formula can be transformed into CNF by adding variables <math>Z_1,\ldots,Z_n</math> as follows: <math display="block">(Z_1 \vee \ldots \vee Z_n) \wedge (\neg Z_1 \vee X_1) \wedge (\neg Z_1 \vee Y_1) \wedge \ldots \wedge (\neg Z_n \vee X_n) \wedge (\neg Z_n \vee Y_n). </math> An [[interpretation (logic)|interpretation]] satisfies this formula only if at least one of the new variables is true. If this variable is <math>Z_i</math>, then both <math>X_i</math> and <math>Y_i</math> are true as well. This means that every [[Model theory|model]] that satisfies this formula also satisfies the original one. On the other hand, only some of the models of the original formula satisfy this one: since the <math>Z_i</math> are not mentioned in the original formula, their values are irrelevant to satisfaction of it, which is not the case in the last formula. This means that the original formula and the result of the translation are [[Equisatisfiability|equisatisfiable]] but not [[logical equivalence|equivalent]]. An alternative translation, the [[Tseitin transformation]], includes also the clauses <math>Z_i \vee \neg X_i \vee \neg Y_i</math>. With these clauses, the formula implies <math>Z_i \equiv X_i \wedge Y_i</math>; this formula is often regarded to "define" <math>Z_i</math> to be a name for <math>X_i \wedge Y_i</math>.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Conjunctive normal form
(section)
Add topic