Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Central limit theorem
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Multidimensional CLT=== Proofs that use characteristic functions can be extended to cases where each individual <math display="inline">\mathbf{X}_i</math> is a [[random vector]] in {{nowrap|<math display="inline">\R^k</math>,}} with mean vector <math display="inline">\boldsymbol\mu = \operatorname E[\mathbf{X}_i]</math> and [[covariance matrix]] <math display="inline">\mathbf{\Sigma}</math> (among the components of the vector), and these random vectors are independent and identically distributed. The multidimensional central limit theorem states that when scaled, sums converge to a [[multivariate normal distribution]].<ref name="vanderVaart">{{Cite book |last=van der Vaart |first=A.W. |title=Asymptotic statistics |year=1998 |publisher=Cambridge University Press |location=New York, NY |isbn=978-0-521-49603-2 |lccn=98015176}}</ref> Summation of these vectors is done component-wise. For <math>i = 1, 2, 3, \ldots,</math> let <math display="block">\mathbf{X}_i = \begin{bmatrix} X_{i}^{(1)} \\ \vdots \\ X_{i}^{(k)} \end{bmatrix}</math> be independent random vectors. The sum of the random vectors <math>\mathbf{X}_1, \ldots, \mathbf{X}_n</math> is <math display="block">\sum_{i=1}^{n} \mathbf{X}_i = \begin{bmatrix} X_{1}^{(1)} \\ \vdots \\ X_{1}^{(k)} \end{bmatrix} + \begin{bmatrix} X_{2}^{(1)} \\ \vdots \\ X_{2}^{(k)} \end{bmatrix} + \cdots + \begin{bmatrix} X_{n}^{(1)} \\ \vdots \\ X_{n}^{(k)} \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{n} X_{i}^{(1)} \\ \vdots \\ \sum_{i=1}^{n} X_{i}^{(k)} \end{bmatrix}</math> and their average is <math display="block">\mathbf{\bar X_n} = \begin{bmatrix} \bar X_{i}^{(1)} \\ \vdots \\ \bar X_{i}^{(k)} \end{bmatrix} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_i.</math> Therefore, <math display="block">\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \left[ \mathbf{X}_i - \operatorname E \left( \mathbf{X}_i \right) \right] = \frac{1}{\sqrt{n}}\sum_{i=1}^{n} ( \mathbf{X}_i - \boldsymbol\mu ) = \sqrt{n}\left(\overline{\mathbf{X}}_n - \boldsymbol\mu\right). </math> The multivariate central limit theorem states that <math display="block">\sqrt{n}\left( \overline{\mathbf{X}}_n - \boldsymbol\mu \right) \mathrel{\overset{d}{\longrightarrow}} \mathcal{N}_k(0,\boldsymbol\Sigma),</math> where the [[covariance matrix]] <math>\boldsymbol{\Sigma}</math> is equal to <math display="block"> \boldsymbol\Sigma = \begin{bmatrix} {\operatorname{Var} \left (X_{1}^{(1)} \right)} & \operatorname{Cov} \left (X_{1}^{(1)},X_{1}^{(2)} \right) & \operatorname{Cov} \left (X_{1}^{(1)},X_{1}^{(3)} \right) & \cdots & \operatorname{Cov} \left (X_{1}^{(1)},X_{1}^{(k)} \right) \\ \operatorname{Cov} \left (X_{1}^{(2)},X_{1}^{(1)} \right) & \operatorname{Var} \left( X_{1}^{(2)} \right) & \operatorname{Cov} \left(X_{1}^{(2)},X_{1}^{(3)} \right) & \cdots & \operatorname{Cov} \left(X_{1}^{(2)},X_{1}^{(k)} \right) \\ \operatorname{Cov}\left (X_{1}^{(3)},X_{1}^{(1)} \right) & \operatorname{Cov} \left (X_{1}^{(3)},X_{1}^{(2)} \right) & \operatorname{Var} \left (X_{1}^{(3)} \right) & \cdots & \operatorname{Cov} \left (X_{1}^{(3)},X_{1}^{(k)} \right) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \operatorname{Cov} \left (X_{1}^{(k)},X_{1}^{(1)} \right) & \operatorname{Cov} \left (X_{1}^{(k)},X_{1}^{(2)} \right) & \operatorname{Cov} \left (X_{1}^{(k)},X_{1}^{(3)} \right) & \cdots & \operatorname{Var} \left (X_{1}^{(k)} \right) \\ \end{bmatrix}~.</math> The multivariate central limit theorem can be proved using the [[Cramér–Wold theorem]].<ref name="vanderVaart"/> The rate of convergence is given by the following [[Berry–Esseen theorem|Berry–Esseen]] type result: {{math theorem | name = Theorem<ref>{{cite web |first=Ryan |last=O’Donnell | author-link = Ryan O'Donnell (computer scientist) |year=2014 |title=Theorem 5.38 |url=http://www.contrib.andrew.cmu.edu/~ryanod/?p=866 |access-date=2017-10-18 |archive-date=2019-04-08 |archive-url=https://web.archive.org/web/20190408054104/http://www.contrib.andrew.cmu.edu/~ryanod/?p=866 |url-status=dead }}</ref> | math_statement = Let <math>X_1, \dots, X_n, \dots</math> be independent <math>\R^d</math>-valued random vectors, each having mean zero. Write <math>S =\sum^n_{i=1}X_i</math> and assume <math>\Sigma = \operatorname{Cov}[S]</math> is invertible. Let <math>Z \sim \mathcal{N}(0,\Sigma)</math> be a <math>d</math>-dimensional Gaussian with the same mean and same covariance matrix as <math>S</math>. Then for all convex sets {{nowrap|<math>U \subseteq \R^d</math>,}} <math display="block">\left|\mathbb{P}[S \in U] - \mathbb{P}[Z \in U]\right| \le C \, d^{1/4} \gamma~,</math> where <math>C</math> is a universal constant, {{nowrap|<math>\gamma = \sum^n_{i=1} \operatorname E \left[\left\| \Sigma^{-1/2}X_i\right\|^3_2\right]</math>,}} and <math>\|\cdot\|_2</math> denotes the Euclidean norm on {{nowrap|<math>\R^d</math>.}} }} It is unknown whether the factor <math display="inline">d^{1/4}</math> is necessary.<ref>{{cite journal |first=V. |last=Bentkus |title=A Lyapunov-type bound in <math>\R^d</math> |journal=Theory Probab. Appl. |volume=49 |year=2005 |issue=2 |pages=311–323 |doi=10.1137/S0040585X97981123 }}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Central limit theorem
(section)
Add topic