Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
CHSH inequality
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Optimal violation by a general quantum state == In experimental practice, the two particles are not an ideal [[EPR pair]]. There is a necessary and sufficient condition for a two-[[qubit]] [[density matrix]] <math>\rho</math> to violate the CHSH inequality, expressed by the maximum attainable polynomial ''S''<sub>max</sub> defined in {{EquationNote|2|Eq. 2}}.<ref name=Horodecki-1995>{{citation |author1=R. Horodecki |author2=P. Horodecki |author3=M. Horodecki |year=1995 |title=Violating Bell inequality by mixed spin-<math>\tfrac{1}{2}</math> states: Necessary and sufficient condition |journal=Phys.Lett. A |volume=200 |issue=5 |pages=340–344 |doi=10.1016/0375-9601(95)00214-N}}</ref> This is important in entanglement-based [[quantum key distribution]], where the secret key rate depends on the degree of measurement correlations.<ref name=Pironio-2009>{{citation | author1=Stefano Pironio |author2=Antonio Acín |author3=Nicolas Brunner |author4=Nicolas Gisin |author5=Serge Massar |author6=Valerio Scarani | year=2009 | title=Device-independent quantum key distribution secure against collective attacks | journal=New J. Phys. | volume=11 |issue=4 | pages=045021 | doi=10.1088/1367-2630/11/4/045021|arxiv=0903.4460 |bibcode=2009NJPh...11d5021P |s2cid=7971771 |doi-access=free }}</ref> Let us introduce a 3×3 real matrix <math>T_{\rho}</math> with elements <math>t_{ij} = \operatorname{Tr}[\rho\cdot(\sigma_i \otimes \sigma_j)]</math>, where <math>\sigma_1, \sigma_2, \sigma_3</math> are the [[Pauli matrices]]. Then we find the [[eigenvalues and eigenvectors]] of the real symmetric matrix <math>U_\rho = T_\rho^\text{T} T_\rho</math>, <math display=block> U_\rho \boldsymbol{e}_i = \lambda_i \boldsymbol{e}_i, \quad |\boldsymbol{e}_i| = 1, \quad i=1,2,3, </math> where the indices are sorted by <math>\lambda_1 \geq \lambda_2 \geq \lambda_3</math>. Then, the maximal CHSH polynomial is determined by the two greatest eigenvalues,<ref name="Horodecki-1995"/> <math display=block> S_\text{max}(\rho) = 2\sqrt{\lambda_1 + \lambda_2}. </math> === Optimal measurement bases === There exists an optimal configuration of the measurement bases ''a, a', b, b''' for a given <math>\rho</math> that yields ''S''<sub>max</sub> with at least one free parameter.<ref name=Kofman-2012>{{citation |author=A. G. Kofman |year=2012 |title=Optimal conditions for Bell-inequality violation in the presence of decoherence and errors | journal=Quantum Inf. Process. |volume=11 |pages=269–309 |doi=10.1007/s11128-011-0242-1|arxiv=0804.4167 |s2cid=41329613 }}</ref><ref name=Hosak-2021>{{citation | author1=R. Hošák | author2=I. Straka | author3=A. Predojević | author4=R. Filip | author5=M. Ježek | year=2021 | title=Effect of source statistics on utilizing photon entanglement in quantum key distribution | journal=Phys. Rev. A | volume=103 | issue=4 | pages=042411 | doi=10.1103/PhysRevA.103.042411| arxiv=2008.07501 | bibcode=2021PhRvA.103d2411H | s2cid=221140079 }}</ref> The projective measurement that yields either +1 or −1 for two orthogonal states <math>|\alpha\rangle, |\alpha^\perp\rangle</math> respectively, can be expressed by an operator <math>\Alpha = |\alpha\rangle\langle\alpha| - |\alpha^\perp\rangle\langle\alpha^\perp|</math>. The choice of this measurement basis can be parametrized by a real unit vector <math>\boldsymbol{a} \in \mathbb{R}^3, |\boldsymbol{a}|=1</math> and the [[Pauli vector]] <math>\boldsymbol{\sigma}</math> by expressing <math>\Alpha = \boldsymbol{a} \cdot \boldsymbol{\sigma}</math>. Then, the expected correlation in bases ''a, b'' is <math display=block> E(a,b) = \operatorname{Tr}[\rho(\boldsymbol{a} \cdot \boldsymbol{\sigma})\otimes(\boldsymbol{b} \cdot \boldsymbol{\sigma})] = \boldsymbol{a}^\text{T} T_\rho \boldsymbol{b}. </math> The numerical values of the basis vectors, when found, can be directly translated to the configuration of the projective measurements.<ref name=Hosak-2021/> The optimal set of bases for the state <math>\rho</math> is found by taking the two greatest eigenvalues <math>\lambda_{1,2}</math> and the corresponding eigenvectors <math>\boldsymbol{e}_{1,2}</math> of <math>U_\rho</math>, and finding the auxiliary unit vectors <math display=block> \begin{align} \boldsymbol{c} &= \boldsymbol{e}_1 \cos\varphi + \boldsymbol{e}_2 \sin\varphi, \\ \boldsymbol{c}' &= \boldsymbol{e}_1 \sin\varphi - \boldsymbol{e}_2 \cos\varphi, \end{align} </math> where <math>\varphi</math> is a free parameter. We also calculate the acute angle <math display=block> \theta = \operatorname{arctan} \sqrt{\frac{\lambda_2 + \lambda_1 \tan^2{\varphi}}{\lambda_1 + \lambda_2 \tan^2{\varphi}}} </math> to obtain the bases that maximize {{EquationNote|2|Eq. 2}}, <math display=block> \begin{align} \boldsymbol{a} &= T_\rho \boldsymbol{c}' / |T_\rho \boldsymbol{c}'|, \\ \boldsymbol{a}' &= T_\rho \boldsymbol{c} / |T_\rho \boldsymbol{c}|, \\ \boldsymbol{b} &= \boldsymbol{c} \cos\theta + \boldsymbol{c}' \sin\theta, \\ \boldsymbol{b}' &= \boldsymbol{c} \cos\theta - \boldsymbol{c}' \sin\theta. \end{align} </math> In entanglement-based [[quantum key distribution]], there is another measurement basis used to communicate the secret key (<math>\boldsymbol{a}_0</math> assuming Alice uses the side A). The bases <math>\boldsymbol{a}_0, \boldsymbol{b}</math> then need to minimize the quantum bit error rate ''Q'', which is the probability of obtaining different measurement outcomes (+1 on one particle and −1 on the other).<ref name=Pironio-2009/> The corresponding bases are<ref name=Hosak-2021/> <math display=block> \begin{align} \boldsymbol{a}_0 &= T_\rho \boldsymbol{e}_1 / |T_\rho \boldsymbol{e}_1|, \\ \boldsymbol{b} &= \boldsymbol{e}_1. \end{align} </math> The CHSH polynomial ''S'' needs to be maximized as well, which together with the bases above creates the constraint <math>\varphi = \pi/4</math>.<ref name=Hosak-2021/>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
CHSH inequality
(section)
Add topic