Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Axiom of choice
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Examples== The nature of the individual nonempty sets in the collection may make it possible to avoid the axiom of choice even for certain infinite collections. For example, suppose that each member of the collection ''X'' is a nonempty subset of the natural numbers. Every such subset has a smallest element, so to specify our choice function we can simply say that it maps each set to the least element of that set. This gives us a definite choice of an element from each set, and makes it unnecessary to add the axiom of choice to our axioms of set theory. The difficulty appears when there is no natural choice of elements from each set. If we cannot make explicit choices, how do we know that our selection forms a legitimate set (as defined by the other ZF axioms of set theory)? For example, suppose that ''X'' is the set of all non-empty subsets of the [[real number]]s. First we might try to proceed as if ''X'' were finite. If we try to choose an element from each set, then, because ''X'' is infinite, our choice procedure will never come to an end, and consequently we shall never be able to produce a choice function for all of ''X''. Next we might try specifying the least element from each set. But some subsets of the real numbers do not have least elements. For example, the open [[Interval (mathematics)|interval]] (0,1) does not have a least element: if ''x'' is in (0,1), then so is ''x''/2, and ''x''/2 is always strictly smaller than ''x''. So this attempt also fails. Additionally, consider for instance the unit circle ''S'', and the action on ''S'' by a group ''G'' consisting of all rational rotations, that is, rotations by angles which are rational multiples of ''Ο''. Here ''G'' is countable while ''S'' is uncountable. Hence ''S'' breaks up into uncountably many orbits under ''G''. Using the axiom of choice, we could pick a single point from each orbit, obtaining an uncountable subset ''X'' of ''S'' with the property that all of its translates by ''G'' are disjoint from ''X''. The set of those translates partitions the circle into a countable collection of pairwise disjoint sets, which are all pairwise congruent. Since ''X'' is not measurable for any rotation-invariant countably additive finite measure on ''S'', finding an algorithm to form a set from selecting a point in each orbit requires that one add the axiom of choice to our axioms of set theory. See [[non-measurable set#Example|non-measurable set]] for more details. In classical arithmetic, the natural numbers are [[well-order]]ed: for every nonempty subset of the natural numbers, there is a unique least element under the natural ordering. In this way, one may specify a set from any given subset. One might say, "Even though the usual ordering of the real numbers does not work, it may be possible to find a different ordering of the real numbers which is a well-ordering. Then our choice function can choose the least element of every set under our unusual ordering." The problem then becomes that of constructing a well-ordering, which turns out to require the axiom of choice for its existence; every set can be well-ordered if and only if the axiom of choice holds.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Axiom of choice
(section)
Add topic