Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Absolute convergence
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Proof that any absolutely convergent series of complex numbers is convergent=== Suppose that <math display=inline>\sum \left|a_k\right|, a_k \in \Complex</math> is convergent. Then equivalently, <math display=inline>\sum \left[ \operatorname{Re}\left(a_k\right)^2 + \operatorname{Im}\left(a_k\right)^2 \right]^{1/2}</math> is convergent, which implies that <math display=inline>\sum \left|\operatorname{Re}\left(a_k\right)\right|</math> and <math display=inline>\sum\left|\operatorname{Im}\left(a_k\right)\right|</math> converge by termwise comparison of non-negative terms. It suffices to show that the convergence of these series implies the convergence of <math display=inline>\sum \operatorname{Re}\left(a_k\right)</math> and <math display=inline>\sum \operatorname{Im}\left(a_k\right),</math> for then, the convergence of <math display=inline>\sum a_k=\sum \operatorname{Re}\left(a_k\right) + i \sum \operatorname{Im}\left(a_k\right)</math> would follow, by the definition of the convergence of complex-valued series. The preceding discussion shows that we need only prove that convergence of <math display=inline>\sum \left|a_k\right|, a_k\in\R</math> implies the convergence of <math display=inline>\sum a_k.</math> Let <math display=inline>\sum \left|a_k\right|, a_k\in\R</math> be convergent. Since <math>0 \leq a_k + \left|a_k\right| \leq 2\left|a_k\right|,</math> we have <math display=block>0 \leq \sum_{k = 1}^n (a_k + \left|a_k\right|) \leq \sum_{k = 1}^n 2\left|a_k\right|.</math> Since <math display=inline>\sum 2\left|a_k\right|</math> is convergent, <math display=inline>s_n=\sum_{k = 1}^n \left(a_k + \left|a_k\right|\right)</math> is a [[Sequence#Bounded|bounded]] [[Sequence#Increasing and decreasing|monotonic]] [[sequence]] of partial sums, and <math display=inline>\sum \left(a_k + \left|a_k\right|\right)</math> must also converge. Noting that <math display=inline>\sum a_k = \sum \left(a_k + \left|a_k\right|\right) - \sum \left|a_k\right|</math> is the difference of convergent series, we conclude that it too is a convergent series, as desired. ==== Alternative proof using the Cauchy criterion and triangle inequality ==== By applying the Cauchy criterion for the convergence of a complex series, we can also prove this fact as a simple implication of the [[triangle inequality]].<ref>{{Cite book|url=https://archive.org/details/1979RudinW|title=Principles of Mathematical Analysis|last=Rudin|first=Walter|publisher=McGraw-Hill|year=1976|isbn=0-07-054235-X|location=New York|pages=71β72}}</ref> By the [[Cauchy's convergence test|Cauchy criterion]], <math display=inline>\sum |a_i|</math> converges if and only if for any <math>\varepsilon > 0,</math> there exists <math>N</math> such that <math display=inline>\left|\sum_{i=m}^n \left|a_i\right| \right| = \sum_{i=m}^n |a_i| < \varepsilon</math> for any <math>n > m \geq N.</math> But the triangle inequality implies that <math display=inline>\big|\sum_{i=m}^n a_i\big| \leq \sum_{i=m}^n |a_i|,</math> so that <math display=inline>\left|\sum_{i=m}^n a_i\right| < \varepsilon</math> for any <math>n > m \geq N,</math> which is exactly the Cauchy criterion for <math display=inline>\sum a_i.</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Absolute convergence
(section)
Add topic