Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Fourier transform
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Functional relationships, one-dimensional === The Fourier transforms in this table may be found in {{harvtxt|Erdélyi|1954}} or {{harvtxt|Kammler|2000|loc=appendix}}. {| class="wikitable" ! !! Function !! Fourier transform {{br}} unitary, ordinary frequency !! Fourier transform {{br}} unitary, angular frequency !! Fourier transform {{br}} non-unitary, angular frequency !!Remarks |- | |<math> f(x)\,</math> |<math>\begin{align} &\widehat{f}(\xi) \triangleq \widehat {f_1}(\xi) \\&= \int_{-\infty}^\infty f(x) e^{-i 2\pi \xi x}\, dx \end{align}</math> |<math>\begin{align} &\widehat{f}(\omega) \triangleq \widehat {f_2}(\omega) \\&= \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^\infty f(x) e^{-i \omega x}\, dx \end{align}</math> |<math>\begin{align} &\widehat{f}(\omega) \triangleq \widehat {f_3}(\omega) \\&= \int_{-\infty}^\infty f(x) e^{-i \omega x}\, dx \end{align}</math> |Definitions |- | 101 |<math> a\, f(x) + b\, g(x)\,</math> |<math> a\, \widehat{f}(\xi) + b\, \widehat{g}(\xi)\,</math> |<math> a\, \widehat{f}(\omega) + b\, \widehat{g}(\omega)\,</math> |<math> a\, \widehat{f}(\omega) + b\, \widehat{g}(\omega)\,</math> |Linearity |- | 102 |<math> f(x - a)\,</math> |<math> e^{-i 2\pi \xi a} \widehat{f}(\xi)\,</math> |<math> e^{- i a \omega} \widehat{f}(\omega)\,</math> |<math> e^{- i a \omega} \widehat{f}(\omega)\,</math> |Shift in time domain |- | 103 |<math> f(x)e^{iax}\,</math> |<math> \widehat{f} \left(\xi - \frac{a}{2\pi}\right)\,</math> |<math> \widehat{f}(\omega - a)\,</math> |<math> \widehat{f}(\omega - a)\,</math> |Shift in frequency domain, dual of 102 |- | 104 |<math> f(a x)\,</math> |<math> \frac{1}{|a|} \widehat{f}\left( \frac{\xi}{a} \right)\,</math> |<math> \frac{1}{|a|} \widehat{f}\left( \frac{\omega}{a} \right)\,</math> |<math> \frac{1}{|a|} \widehat{f}\left( \frac{\omega}{a} \right)\,</math> |Scaling in the time domain. If {{math|{{abs|''a''}}}} is large, then {{math|''f''(''ax'')}} is concentrated around 0 and{{br}}<math> \frac{1}{|a|}\hat{f} \left( \frac{\omega}{a} \right)\,</math>{{br}}spreads out and flattens. |- | 105 |<math> \widehat {f_n}(x)\,</math> |<math> \widehat {f_1}(x) \ \stackrel{\mathcal{F}_1}{\longleftrightarrow}\ f(-\xi)\,</math> |<math> \widehat {f_2}(x) \ \stackrel{\mathcal{F}_2}{\longleftrightarrow}\ f(-\omega)\,</math> |<math> \widehat {f_3}(x) \ \stackrel{\mathcal{F}_3}{\longleftrightarrow}\ 2\pi f(-\omega)\,</math> |The same transform is applied twice, but ''x'' replaces the frequency variable (''ξ'' or ''ω'') after the first transform. |- | 106 |<math> \frac{d^n f(x)}{dx^n}\,</math> |<math> (i 2\pi \xi)^n \widehat{f}(\xi)\,</math> |<math> (i\omega)^n \widehat{f}(\omega)\,</math> |<math> (i\omega)^n \widehat{f}(\omega)\,</math> |n{{superscript|th}}-order derivative. As {{math|''f''}} is a [[Schwartz space|Schwartz function]] |- |106.5 |<math>\int_{-\infty}^{x} f(\tau) d \tau</math> |<math>\frac{\widehat{f}(\xi)}{i 2 \pi \xi} + C \, \delta(\xi)</math> |<math>\frac{\widehat{f} (\omega)}{i\omega} + \sqrt{2 \pi} C \delta(\omega)</math> |<math>\frac{\widehat{f} (\omega)}{i\omega} + 2 \pi C \delta(\omega)</math> |Integration.<ref>{{Cite web |date=2015 |orig-date=2010 |title=The Integration Property of the Fourier Transform |url=https://www.thefouriertransform.com/transform/integration.php |url-status=live |archive-url=https://web.archive.org/web/20220126171340/https://www.thefouriertransform.com/transform/integration.php |archive-date=2022-01-26 |access-date=2023-08-20 |website=The Fourier Transform .com}}</ref> Note: <math>\delta</math> is the [[Dirac delta function]] and <math>C</math> is the average ([[DC component|DC]]) value of <math>f(x)</math> such that <math>\int_{-\infty}^\infty (f(x) - C) \, dx = 0</math> |- | 107 |<math> x^n f(x)\,</math> |<math> \left (\frac{i}{2\pi}\right)^n \frac{d^n \widehat{f}(\xi)}{d\xi^n}\,</math> |<math> i^n \frac{d^n \widehat{f}(\omega)}{d\omega^n}</math> |<math> i^n \frac{d^n \widehat{f}(\omega)}{d\omega^n}</math> |This is the dual of 106 |- | 108 |<math> (f * g)(x)\,</math> |<math> \widehat{f}(\xi) \widehat{g}(\xi)\,</math> |<math> \sqrt{2\pi}\ \widehat{f}(\omega) \widehat{g}(\omega)\,</math> |<math> \widehat{f}(\omega) \widehat{g}(\omega)\,</math> |The notation {{math|''f'' ∗ ''g''}} denotes the [[convolution]] of {{mvar|f}} and {{mvar|g}} — this rule is the [[convolution theorem]] |- | 109 |<math> f(x) g(x)\,</math> |<math> \left(\widehat{f} * \widehat{g}\right)(\xi)\,</math> |<math> \frac{1}\sqrt{2\pi}\left(\widehat{f} * \widehat{g}\right)(\omega)\,</math> |<math> \frac{1}{2\pi}\left(\widehat{f} * \widehat{g}\right)(\omega)\,</math> |This is the dual of 108 |- | 110 |For {{math|''f''(''x'')}} purely real |<math> \widehat{f}(-\xi) = \overline{\widehat{f}(\xi)}\,</math> |<math> \widehat{f}(-\omega) = \overline{\widehat{f}(\omega)}\,</math> |<math> \widehat{f}(-\omega) = \overline{\widehat{f}(\omega)}\,</math> |Hermitian symmetry. {{math|{{overline|''z''}}}} indicates the [[complex conjugate]]. |- <!-- A Symmetry section has been added instead of this. | 111 |For {{math|''f''(''x'')}} purely real and [[even function|even]] | colspan=3 align=center |<math>\widehat f </math> is a purely real and [[even function]]. | |- | 112 |For {{math|''f''(''x'')}} purely real and [[odd function|odd]] | colspan=3 align=center |<math>\widehat f </math> is a purely [[imaginary number|imaginary]] and [[odd function]]. | |--> | 113 |For {{math|''f''(''x'')}} purely imaginary |<math> \widehat{f}(-\xi) = -\overline{\widehat{f}(\xi)}\,</math> |<math> \widehat{f}(-\omega) = -\overline{\widehat{f}(\omega)}\,</math> |<math> \widehat{f}(-\omega) = -\overline{\widehat{f}(\omega)}\,</math> |{{math|{{overline|''z''}}}} indicates the [[complex conjugate]]. |- | 114 | <math> \overline{f(x)}</math>|| <math> \overline{\widehat{f}(-\xi)}</math> || <math> \overline{\widehat{f}(-\omega)}</math> || <math> \overline{\widehat{f}(-\omega)}</math> || [[Complex conjugate|Complex conjugation]], generalization of 110 and 113 |- |115 |<math> f(x) \cos (a x)</math> |<math> \frac{ \widehat{f}\left(\xi - \frac{a}{2\pi}\right)+\widehat{f}\left(\xi+\frac{a}{2\pi}\right)}{2}</math> |<math> \frac{\widehat{f}(\omega-a)+\widehat{f}(\omega+a)}{2}\,</math> |<math> \frac{\widehat{f}(\omega-a)+\widehat{f}(\omega+a)}{2}</math> |This follows from rules 101 and 103 using [[Euler's formula]]:{{br}}<math>\cos(a x) = \frac{e^{i a x} + e^{-i a x}}{2}.</math> |- |116 |<math> f(x)\sin( ax)</math> |<math> \frac{\widehat{f}\left(\xi-\frac{a}{2\pi}\right)-\widehat{f}\left(\xi+\frac{a}{2\pi}\right)}{2i}</math> |<math> \frac{\widehat{f}(\omega-a)-\widehat{f}(\omega+a)}{2i}</math> |<math> \frac{\widehat{f}(\omega-a)-\widehat{f}(\omega+a)}{2i}</math> |This follows from 101 and 103 using [[Euler's formula]]:{{br}}<math>\sin(a x) = \frac{e^{i a x} - e^{-i a x}}{2i}.</math> |}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Fourier transform
(section)
Add topic