Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Vanadium
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Oxyanions === [[File:decavanadate polyhedra.png|thumb|The [[decavanadate]] structure]] <!-- [[File:Ammonium-metavanadate-chains-3D.png|thumb|upright|Metavanadate chains]] -->In an aqueous solution, vanadium(V) forms an extensive family of [[oxyanion]]s as established by [[Vanadium-51 nuclear magnetic resonance|<sup>51</sup>V NMR spectroscopy]].<ref name="Rehder" /> The interrelationships in this family are described by the [[predominance diagram]], which shows at least 11 species, depending on pH and concentration.<ref>{{Greenwood&Earnshaw|page=984}}</ref> The tetrahedral orthovanadate ion, {{chem|VO|4|3β}}, is the principal species present at pH 12β14. Similar in size and charge to phosphorus(V), vanadium(V) also parallels its chemistry and crystallography. [[Sodium orthovanadate|Orthovanadate]] V{{chem|O|4|3β}} is used in [[protein crystallography]]<ref>{{cite journal |last1=Sinning |first1=Irmgard |last2=Hol |first2=Wim G. J. |date=2004 |title=The power of vanadate in crystallographic investigations of phosphoryl transfer enzymes |journal=FEBS Letters |volume=577 |issue=3 |pages=315β21 |doi=10.1016/j.febslet.2004.10.022 |pmid=15556602 |s2cid=8328704 |doi-access=free|bibcode=2004FEBSL.577..315D }}</ref> to study the [[biochemistry]] of phosphate.<ref>{{cite journal |last1=Seargeant |first1=L E |last2=Stinson |first2=R A |date=1 July 1979 |title=Inhibition of human alkaline phosphatases by vanadate |journal=Biochemical Journal |volume=181 |issue=1 |pages=247β250 |doi=10.1042/bj1810247 |pmc=1161148 |pmid=486156}}</ref> Besides that, this anion also has been shown to interact with the activity of some specific enzymes.<ref>{{cite journal |last1=Crans |first1=Debbie C. |last2=Simone |first2=Carmen M. |date=9 July 1991 |title=Nonreductive interaction of vanadate with an enzyme containing a thiol group in the active site: glycerol-3-phosphate dehydrogenase |journal=Biochemistry |volume=30 |issue=27 |pages=6734β6741 |doi=10.1021/bi00241a015 |pmid=2065057}}</ref><ref>{{cite journal |last1=Karlish |first1=S. J. D. |last2=BeaugΓ© |first2=L. A. |last3=Glynn |first3=I. M. |date=November 1979 |title=Vanadate inhibits (Na+ + K+)ATPase by blocking a conformational change of the unphosphorylated form |journal=Nature |volume=282 |issue=5736 |pages=333β335 |bibcode=1979Natur.282..333K |doi=10.1038/282333a0 |pmid=228199 |s2cid=4341480}}</ref> The tetrathiovanadate [VS<sub>4</sub>]<sup>3β</sup> is analogous to the orthovanadate ion.<ref>{{Greenwood&Earnshaw|page=988}}</ref> At lower pH values, the monomer [HVO<sub>4</sub>]<sup>2β</sup> and dimer [V<sub>2</sub>O<sub>7</sub>]<sup>4β</sup> are formed, with the monomer predominant at a vanadium concentration of less than c. 10<sup>β2</sup>M (pV > 2, where pV is equal to the minus value of the logarithm of the total vanadium concentration/M). The formation of the divanadate ion is analogous to the formation of the [[dichromate]] ion.<ref>{{cite journal |last1=Crans |first1=Debbie C. |date=18 December 2015 |title=Antidiabetic, Chemical, and Physical Properties of Organic Vanadates as Presumed Transition-State Inhibitors for Phosphatases |journal=The Journal of Organic Chemistry |volume=80 |issue=24 |pages=11899β11915 |doi=10.1021/acs.joc.5b02229 |pmid=26544762|doi-access=free }}</ref><ref>{{cite thesis |last1=Jung |first1=Sabrina |title=Speciation of molybdenum- and vanadium-based polyoxometalate species in aqueous medium and gas-phase and its consequences for M1 structured MoV oxide synthesis |date=2018 |doi=10.14279/depositonce-7254}}</ref> As the pH is reduced, further protonation and condensation to [[vanadate|polyvanadates]] occur: at pH 4β6 [H<sub>2</sub>VO<sub>4</sub>]<sup>β</sup> is predominant at pV greater than ca. 4, while at higher concentrations trimers and tetramers are formed.<ref>{{Citation |last=Cruywagen |first=J. J. |title=Protonation, Oligomerization, and Condensation Reactions of Vanadate(V), Molybdate(vi), and Tungstate(vi) |date=1999-01-01 |url=https://www.sciencedirect.com/science/article/pii/S0898883808602706 |volume=49 |pages=127β182 |editor-last=Sykes |editor-first=A. G. |access-date=2023-04-16 |series=Advances in Inorganic Chemistry |publisher=Academic Press |language=en |doi=10.1016/S0898-8838(08)60270-6 |isbn=978-0-12-023649-7}}</ref> Between pH 2β4 [[decavanadate]] predominates, its formation from orthovanadate is represented by this condensation reaction: :10 [VO<sub>4</sub>]<sup>3β</sup> + 24 H<sup>+</sup> β [V<sub>10</sub>O<sub>28</sub>]<sup>6β</sup> + 12 H<sub>2</sub>O [[File:Vanadium crystal.jpg|thumb|Vanadium crystal]] In decavanadate, each V(V) center is surrounded by six oxide [[ligand]]s.<ref name="HollemanAF" /> Vanadic acid, H<sub>3</sub>VO<sub>4</sub>, exists only at very low concentrations because protonation of the tetrahedral species [H<sub>2</sub>VO<sub>4</sub>]<sup>β</sup> results in the preferential formation of the octahedral [VO<sub>2</sub>(H<sub>2</sub>O)<sub>4</sub>]<sup>+</sup> species.<ref>{{Cite book |last1=Tracey |first1=Alan S. |url=https://books.google.com/books?id=vkMGP3PiuyYC&dq=+protonation+of+the+tetrahedral+species+%5BH2VO4%5D%E2%88%92+results+in+the+preferential+formation+of+the+octahedral+%5BVO2(H2O)4%5D++species&pg=PP1 |title=Vanadium: Chemistry, Biochemistry, Pharmacology and Practical Applications |last2=Willsky |first2=Gail R. |last3=Takeuchi |first3=Esther S. |date=2007-03-19 |publisher=CRC Press |isbn=978-1-4200-4614-4 |language=en}}</ref> In strongly acidic solutions, pH < 2, [VO<sub>2</sub>(H<sub>2</sub>O)<sub>4</sub>]<sup>+</sup> is the predominant species, while the oxide V<sub>2</sub>O<sub>5</sub> precipitates from solution at high concentrations. The oxide is formally the [[acidic oxide|acid anhydride]] of vanadic acid. The structures of many [[vanadate]] compounds have been determined by X-ray crystallography. [[File:VinwaterPourbaixdiagram2.svg|thumb|The [[Pourbaix diagram]] for vanadium in water, which shows the [[redox]] potentials between various vanadium species in different oxidation states<ref>{{cite journal |last1=Al-Kharafi |first1=F.M. |last2=Badawy |first2=W.A. |date=January 1997 |title=Electrochemical behaviour of vanadium in aqueous solutions of different pH |journal=Electrochimica Acta |volume=42 |issue=4 |pages=579β586 |doi=10.1016/S0013-4686(96)00202-2}}</ref>]] Vanadium(V) forms various peroxo complexes, most notably in the active site of the vanadium-containing [[bromoperoxidase]] enzymes. The species VO(O<sub>2</sub>)(H<sub>2</sub>O)<sub>4</sub><sup>+</sup> is stable in acidic solutions. In alkaline solutions, species with 2, 3 and 4 peroxide groups are known; the last forms violet salts with the formula M<sub>3</sub>V(O<sub>2</sub>)<sub>4</sub> nH<sub>2</sub>O (M= Li, Na, etc.), in which the vanadium has an 8-coordinate dodecahedral structure.<ref>{{Greenwood&Earnshaw}}, p994.</ref><ref>{{cite book |author=Strukul, Giorgio |url=https://books.google.com/books?id=Lmt3x9CyfLgC&pg=PA128 |title=Catalytic oxidations with hydrogen peroxide as oxidant |date=1992 |publisher=Springer |isbn=978-0-7923-1771-5 |page=128}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Vanadium
(section)
Add topic