Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Transpose
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Properties === Let {{math|'''A'''}} and {{math|'''B'''}} be matrices and {{mvar|c}} be a [[Scalar (mathematics)|scalar]]. * <math>\left(\mathbf{A}^\operatorname{T} \right)^\operatorname{T} = \mathbf{A}.</math> *:The operation of taking the transpose is an [[Involution (mathematics)|involution]] (self-[[Inverse matrix|inverse]]). *<math>\left(\mathbf{A} + \mathbf{B}\right)^\operatorname{T} = \mathbf{A}^\operatorname{T} + \mathbf{B}^\operatorname{T}.</math> *:The transpose respects [[Matrix addition|addition]]. *<math>\left(c \mathbf{A}\right)^\operatorname{T} = c (\mathbf{A}^\operatorname{T}).</math> *:The transpose of a scalar is the same scalar. Together with the preceding property, this implies that the transpose is a [[linear map]] from the [[Vector space|space]] of {{math|{{nowrap|''m'' Γ ''n''}}}} matrices to the space of the {{math|{{nowrap|''n'' Γ ''m''}}}} matrices. *<math>\left(\mathbf{A B}\right)^\operatorname{T} = \mathbf{B}^\operatorname{T} \mathbf{A}^\operatorname{T}.</math> *:The order of the factors reverses. By induction, this result extends to the general case of multiple matrices, so *::{{math|('''A'''<sub>1</sub>'''A'''<sub>2</sub>...'''A'''<sub>''k''β1</sub>'''A'''<sub>''k''</sub>)<sup>T</sup> {{=}} '''A'''<sub>''k''</sub><sup>T</sup>'''A'''<sub>''k''β1</sub><sup>T</sup>β¦'''A'''<sub>2</sub><sup>T</sup>'''A'''<sub>1</sub><sup>T</sup>}}. *<math>\det \left(\mathbf{A}^\operatorname{T}\right) = \det(\mathbf{A}).</math> *:The [[determinant]] of a square matrix is the same as the determinant of its transpose. *The [[dot product]] of two column vectors {{math|'''a'''}} and {{math|'''b'''}} can be computed as the single entry of the matrix product<math display=block>\mathbf{a} \cdot \mathbf{b} = \mathbf{a}^{\operatorname{T}} \mathbf{b}.</math> *If {{math|'''A'''}} has only real entries, then {{math|'''A'''<sup>T</sup>'''A'''}} is a [[positive-semidefinite matrix]]. *<math> \left(\mathbf{A}^\operatorname{T} \right)^{-1} = \left(\mathbf{A}^{-1} \right)^\operatorname{T}.</math> *: The transpose of an invertible matrix is also invertible, and its inverse is the transpose of the inverse of the original matrix.<br>The notation {{math|'''A'''<sup>βT</sup>}} is sometimes used to represent either of these equivalent expressions. *If {{math|'''A'''}} is a square matrix, then its [[Eigenvalue, eigenvector and eigenspace|eigenvalues]] are equal to the eigenvalues of its transpose, since they share the same [[characteristic polynomial]]. *<math> \left(\mathbf A\mathbf a\right) \cdot \mathbf b =\mathbf a \cdot \mathbf \left(A^T\mathbf b\right)</math> for two column vectors <math> \mathbf a, \mathbf b </math> and the standard [[dot product]]. *Over any field <math>k</math>, a square matrix <math>\mathbf{A}</math> is [[matrix similarity|similar]] to <math>\mathbf{A}^\operatorname{T}</math>. *:This implies that <math>\mathbf{A}</math> and <math>\mathbf{A}^\operatorname{T}</math> have the same [[invariant factors]], which implies they share the same minimal polynomial, characteristic polynomial, and eigenvalues, among other properties. *:A proof of this property uses the following two observations. *:* Let <math>\mathbf{A}</math> and <math>\mathbf{B}</math> be <math>n\times n</math> matrices over some base field <math>k</math> and let <math>L</math> be a [[field extension]] of <math>k</math>. If <math>\mathbf{A}</math> and <math>\mathbf{B}</math> are similar as matrices over <math>L</math>, then they are similar over <math>k</math>. In particular this applies when <math>L</math> is the [[algebraic closure]] of <math>k</math>. *:*If <math>\mathbf{A}</math> is a matrix over an algebraically closed field in [[Jordan normal form]] with respect to some basis, then <math>\mathbf{A}</math> is similar to <math>\mathbf{A}^\operatorname{T}</math>. This further reduces to proving the same fact when <math>\mathbf{A}</math> is a single Jordan block, which is a straightforward exercise.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Transpose
(section)
Add topic