Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Tensor product
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Linearly disjoint === Like the universal property above, the following characterization may also be used to determine whether or not a given vector space and given bilinear map form a tensor product.{{sfn|Trèves|2006|pp=403-404}} {{math theorem|math_statement= Let {{tmath|1= X, Y }}, and <math>Z</math> be complex vector spaces and let <math>T : X \times Y \to Z</math> be a bilinear map. Then <math>(Z, T)</math> is a tensor product of <math>X</math> and <math>Y</math> if and only if{{sfn|Trèves|2006|pp=403-404}} the image of <math>T</math> spans all of <math>Z</math> (that is, {{tmath|1= \operatorname{span} \; T(X \times Y) = Z }}), and also <math>X</math> and <math>Y</math> are {{em|<math>T</math>-linearly disjoint}}, which by definition means that for all positive integers <math>n</math> and all elements <math>x_1, \ldots, x_n \in X</math> and <math>y_1, \ldots, y_n \in Y</math> such that {{tmath|1= \sum_{i=1}^n T\left(x_i, y_i\right) = 0 }}, # if all <math>x_1, \ldots, x_n</math> are [[linearly independent]] then all <math>y_i</math> are {{tmath|1= 0 }}, and # if all <math>y_1, \ldots, y_n</math> are linearly independent then all <math>x_i</math> are {{tmath|1= 0 }}. Equivalently, <math>X</math> and <math>Y</math> are <math>T</math>-linearly disjoint if and only if for all linearly independent sequences <math>x_1, \ldots, x_m</math> in <math>X</math> and all linearly independent sequences <math>y_1, \ldots, y_n</math> in {{tmath|1= Y }}, the vectors <math>\left\{T\left(x_i, y_j\right) : 1 \leq i \leq m, 1 \leq j \leq n\right\}</math> are linearly independent. }} For example, it follows immediately that if {{tmath|1=X=\C^m}} and {{tmath|1=Y=\C^n}}, where <math>m</math> and <math>n</math> are positive integers, then one may set <math>Z = \Complex^{mn}</math> and define the bilinear map as <math display=block>\begin{align} T : \Complex^m \times \Complex^n &\to \Complex^{mn}\\ (x, y) = ((x_1, \ldots, x_m), (y_1, \ldots, y_n)) &\mapsto (x_i y_j)_{\stackrel{i=1,\ldots,m}{j=1,\ldots,n}}\end{align}</math> to form the tensor product of <math>X </math> and {{tmath|1= Y }}.{{sfn|Trèves|2006|pp=407}} Often, this map <math>T</math> is denoted by <math>\,\otimes\,</math> so that <math>x \otimes y = T(x, y).</math> As another example, suppose that <math>\Complex^S</math> is the vector space of all complex-valued functions on a set <math>S</math> with addition and scalar multiplication defined pointwise (meaning that <math>f + g</math> is the map <math>s \mapsto f(s) + g(s)</math> and <math>c f</math> is the map {{tmath|1= s \mapsto c f(s) }}). Let <math>S</math> and <math>T</math> be any sets and for any <math>f \in \Complex^S</math> and {{tmath|1= g \in \Complex^T }}, let <math>f \otimes g \in \Complex^{S \times T}</math> denote the function defined by {{tmath|1= (s, t) \mapsto f(s) g(t) }}. If <math>X \subseteq \Complex^S</math> and <math>Y \subseteq \Complex^T</math> are vector subspaces then the vector subspace <math>Z := \operatorname{span} \left\{f \otimes g : f \in X, g \in Y\right\}</math> of <math>\Complex^{S \times T}</math> together with the bilinear map: <math display=block>\begin{alignat}{4} \;&& X \times Y &&\;\to \;& Z \\[0.3ex] && (f, g) &&\;\mapsto\;& f \otimes g \\ \end{alignat}</math> form a tensor product of <math>X</math> and {{tmath|1= Y }}.{{sfn|Trèves|2006|pp=407}}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Tensor product
(section)
Add topic