Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Step function
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Properties== * The sum and product of two step functions is again a step function. The product of a step function with a number is also a step function. As such, the step functions form an [[algebra over a field|algebra]] over the real numbers. * A step function takes only a finite number of values. If the intervals <math>A_i,</math> for <math>i=0, 1, \dots, n</math> in the above definition of the step function are disjoint and their union is the real line, then <math>f(x)=\alpha_i</math> for all <math>x\in A_i.</math> * The [[definite integral]] of a step function is a [[piecewise linear function]]. * The [[Lebesgue integral]] of a step function <math>\textstyle f = \sum_{i=0}^n \alpha_i \chi_{A_i}</math> is <math>\textstyle \int f\,dx = \sum_{i=0}^n \alpha_i \ell(A_i),</math> where <math>\ell(A)</math> is the length of the interval <math>A</math>, and it is assumed here that all intervals <math>A_i</math> have finite length. In fact, this equality (viewed as a definition) can be the first step in constructing the Lebesgue integral.<ref>{{Cite book | author=Weir, Alan J | title=Lebesgue integration and measure | date= 10 May 1973| publisher=Cambridge University Press, 1973 | isbn=0-521-09751-7 |chapter= 3}}</ref> * A [[discrete random variable]] is sometimes defined as a [[random variable]] whose [[cumulative distribution function]] is piecewise constant.<ref name=":0">{{Cite book|title=Introduction to Probability|last=Bertsekas|author-link=Dimitri Bertsekas|first=Dimitri P.|date=2002|publisher=Athena Scientific|others=[[John Tsitsiklis|Tsitsiklis, John N.]], Τσιτσικλής, Γιάννης Ν.|isbn=188652940X|location=Belmont, Mass.|oclc=51441829}}</ref> In this case, it is locally a step function (globally, it may have an infinite number of steps). Usually however, any random variable with only countably many possible values is called a discrete random variable, in this case their cumulative distribution function is not necessarily locally a step function, as infinitely many intervals can accumulate in a finite region.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Step function
(section)
Add topic