Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Stellar nucleosynthesis
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Reaction rate== The reaction rate density between species ''A'' and ''B'', having number densities ''n''<sub>''A'',''B''</sub>, is given by:<math display="block">r=n_A\,n_B\,k_r </math>where ''k<sub>r</sub>'' is the [[reaction rate constant]] of each single elementary binary reaction composing the [[nuclear fusion]] process;<math display="block">k_r=\langle\sigma(v)\,v\rangle</math>where ''σ''(''v'') is the cross-section at relative velocity ''v'', and averaging is performed over all velocities. Semi-classically, the cross section is proportional to <math display="inline">\pi\,\lambda^2</math>, where <math display="inline">\lambda =h/p</math> is the [[matter wave|de Broglie wavelength]]. Thus semi-classically the cross section is proportional to <math display="inline">\frac{E}{m} =c^{2}</math>. However, since the reaction involves [[quantum tunneling]], there is an exponential damping at low energies that depends on [[Gamow factor]] ''E''<sub>G</sub>, given by an [[Arrhenius equation|Arrhenius-type equation]]:<math display="block">\sigma(E) = \frac{S(E)}{E} e^{-\sqrt{\frac{E_\text{G}}{E}}}.</math>Here astrophysical [[S-factor|''S''-factor]] ''S''(''E'') depends on the details of the nuclear interaction, and has the dimension of an energy multiplied by a [[Barn (unit)|cross section]]. One then integrates over all energies to get the total reaction rate, using the [[Maxwell–Boltzmann distribution#Distribution for the energy|Maxwell–Boltzmann distribution]] and the relation:<math display="block">\frac{r}{V}=n_A n_B \int_0^{\infty}\Bigl(\frac{S(E)}{E}\, e^{-\sqrt{\frac{E_\text{G}}{E}}} \cdot2\sqrt{\frac{E}{\pi(kT)^3}}\, e^{-\frac{E}{kT}} \,\cdot\sqrt{\frac{2E}{m_\text{R}}}\Bigr)dE</math>where ''k'' = 86,17 μeV/K, <math>m_\text{R} =\frac{m_Am_B}{m_A+m_B}</math> is the [[reduced mass]]. The integrand equals <math>S(E)\,e^{-\sqrt{\frac{E_\text{G}}{E}}}\cdot2\sqrt{2/\pi}(kT)^{-3/2}\, e^{-\frac{E}{kT}}\,/\sqrt{{m_\text{R}}}.</math> Since this integration of ''f''(''E'', constant ''T'') has an exponential damping at high energies of the form <math display="inline">\sim e^{-\frac{E}{kT}}</math> and at low energies from the Gamow factor, the integral almost vanishes everywhere except around the peak at E<sub>0</sub>, called '''Gamow peak.'''<ref>Iliadis, C., ''Nuclear Physics of Stars'' (Weinheim: Wiley-VCH, 2015), [https://books.google.com/books?id=kLZNCAAAQBAJ&pg=PA185&redir_esc=y#v=onepage&q&f=false p. 185].</ref>{{rp|185}} There:<math display="block">-\frac{\partial}{\partial E} \left(\sqrt{\frac{E_\text{G}}{E}}+\frac{E}{kT}\right)\,=\, 0</math> Thus: <math>E_0 = \left(\frac{1}{2}kT \sqrt{E_\text{G}}\right)^\frac{2}{3}</math> and <math>\sqrt{E_\text{G}}=E_0^\frac{3}{2}/\frac{1}{2}kT </math> The exponent can then be approximated around ''E''<sub>0</sub> as:<math display="block">e^{-(\frac{E}{kT}+\sqrt{\frac{E_\text{G}}{E}})}\approx e^{-\frac{3E_0}{kT}}e^{\bigl(-\frac{3(E-E_0)^2}{4E_0kT}\bigr)}=e^{-\frac{3E_0}{kT}\bigl(1+(\frac{E-E_0}{2E_0})^2\bigr)}=e^{-\frac{3E_0}{kT}\bigl(1+(E/E_0-1)^2/4\bigr)}</math> And the reaction rate is approximated as:<ref>{{Cite web |title=University College London astrophysics course: lecture 7 – Stars |url=https://zuserver2.star.ucl.ac.uk/~idh/PHAS2112/Lectures/Current/Part7.pdf |url-status=dead |archive-url=https://web.archive.org/web/20170115214447/https://zuserver2.star.ucl.ac.uk/~idh/PHAS2112/Lectures/Current/Part7.pdf |archive-date=January 15, 2017 |access-date=May 8, 2020}}</ref><math display="block">\frac{r}{V} \approx n_A \,n_B \,\frac{4\sqrt(2/3)}{ \sqrt{m_\text{R}}} \,\sqrt{E_0}\frac{S(E_0)}{kT} \, e^{-\frac{3E_0}{kT}} </math> Values of ''S''(''E''<sub>0</sub>) are typically {{nowrap|10<sup>−3</sup> – 10<sup>3</sup> [[keV]]·[[barn (unit)|b]]}}, but are damped by a huge factor when involving a [[beta decay]], due to the relation between the intermediate bound state (e.g. [[diproton]]) [[half-life]] and the beta decay half-life, as in the [[proton–proton chain reaction]]. Note that typical core temperatures in [[main-sequence star]]s (the Sun) give ''kT'' of the order of 1 keV:<ref><math>\log_{10}k =(-16-7)+\log_{10}1.3806</math> and <math>\log_{10}T= 7+\log_{10}1.57</math>: ''kT'' = 0.217 fJ = 0.135 keV</ref> <math display="inline">\log_{10}kT=-16+\log_{10}2.17</math>.<ref>Maoz, D., ''Astrophysics in a Nutshell'' ([[Princeton, New Jersey|Princeton]]: [[Princeton University Press]], 2007), [https://assets.press.princeton.edu/chapters/s3-10772.pdf ch. 3].</ref>{{rp|ch. 3}} Thus, the limiting reaction in the [[CNO cycle]], proton capture by {{nuclide|nitrogen|14|link=yes}}, has ''S''(''E''<sub>0</sub>) ~ ''S''(0) = 3.5{{nbsp}}keV·b, while the limiting reaction in the [[proton–proton chain reaction]], the creation of [[deuterium]] from two protons, has a much lower ''S''(''E''<sub>0</sub>) ~ ''S''(0) = 4×10<sup>−22</sup>{{nbsp}}keV·b.<ref>{{Cite journal|last1=Adelberger|first1=Eric G.|author1-link=Eric G. Adelberger|last2=Austin|first2=Sam M.|last3=Bahcall|first3=John N.|author3-link=John N. Bahcall|last4=Balantekin|first4=A. B.|author4-link=A. Baha Balantekin|last5=Bogaert|first5=Gilles|last6=Brown|first6=Lowell S.|author6-link=Lowell S. Brown|last7=Buchmann|first7=Lothar|last8=Cecil|first8=F. Edward|last9=Champagne|first9=Arthur E.|last10=de Braeckeleer|first10=Ludwig|last11=Duba|first11=Charles A.|date=1998-10-01|title=Solar fusion cross sections|journal=Reviews of Modern Physics|language=en|volume=70|issue=4|pages=1265–1291|doi=10.1103/RevModPhys.70.1265|arxiv=astro-ph/9805121|bibcode=1998RvMP...70.1265A|s2cid=16061677|issn=0034-6861}}</ref><ref>{{Cite journal |last1=Adelberger |first1=E. G. |year=2011 |title=Solar fusion cross sections. II. The pp chain and CNO cycles |journal=Reviews of Modern Physics |volume=83 |issue=1 |pages=195–245 |arxiv=1004.2318 |bibcode=2011RvMP...83..195A |doi=10.1103/RevModPhys.83.195 |s2cid=119117147}}</ref> Incidentally, since the former reaction has a much higher Gamow factor, and due to the relative [[abundance of elements]] in typical stars, the two reaction rates are equal at a temperature value that is within the core temperature ranges of main-sequence stars.<ref>Goupil, M., Belkacem, K., Neiner, C., Lignières, F., & Green, J. J., eds., ''Studying Stellar Rotation and Convection: Theoretical Background and Seismic Diagnostics'' (Berlin/Heidelberg: Springer, 2013), [https://books.google.com/books?id=ovO5BQAAQBAJ&pg=PA211&redir_esc=y#v=onepage&q&f=false p. 211].</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Stellar nucleosynthesis
(section)
Add topic