Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Speed of sound
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Dependence on the properties of the medium== The speed of sound is variable and depends on the properties of the substance through which the wave is travelling. In solids, the speed of transverse (or shear) waves depends on the shear deformation under [[shear stress]] (called the [[shear modulus]]), and the density of the medium. Longitudinal (or compression) waves in solids depend on the same two factors with the addition of a dependence on [[compressibility]]. In fluids, only the medium's compressibility and density are the important factors, since fluids do not transmit shear stresses. In heterogeneous fluids, such as a liquid filled with gas bubbles, the density of the liquid and the compressibility of the gas affect the speed of sound in an additive manner, as demonstrated in the [[hot chocolate effect]]. In gases, adiabatic compressibility is directly related to pressure through the [[heat capacity ratio]] (adiabatic index), while pressure and density are inversely related to the temperature and molecular weight, thus making only the completely independent properties of ''temperature and molecular structure'' important (heat capacity ratio may be determined by temperature and molecular structure, but simple molecular weight is not sufficient to determine it). Sound propagates faster in low [[molecular weight]] gases such as [[helium]] than it does in heavier gases such as [[xenon]]. For monatomic gases, the speed of sound is about 75% of the mean speed that the atoms move in that gas. For a given [[ideal gas]] the molecular composition is fixed, and thus the speed of sound depends only on its [[temperature]]. At a constant temperature, the gas [[pressure]] has no effect on the speed of sound, since the density will increase, and since pressure and [[density]] (also proportional to pressure) have equal but opposite effects on the speed of sound, and the two contributions cancel out exactly. In a similar way, compression waves in solids depend both on compressibility and density—just as in liquids—but in gases the density contributes to the compressibility in such a way that some part of each attribute factors out, leaving only a dependence on temperature, molecular weight, and heat capacity ratio which can be independently derived from temperature and molecular composition (see derivations below). Thus, for a single given gas (assuming the molecular weight does not change) and over a small temperature range (for which the heat capacity is relatively constant), the speed of sound becomes dependent on only the temperature of the gas. In non-ideal gas behavior regimen, for which the [[Van der Waals equation|Van der Waals gas]] equation would be used, the proportionality is not exact, and there is a slight dependence of sound velocity on the gas pressure. Humidity has a small but measurable effect on the speed of sound (causing it to increase by about 0.1%–0.6%), because [[oxygen]] and [[nitrogen]] molecules of the air are replaced by lighter molecules of [[water]]. This is a simple mixing effect.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Speed of sound
(section)
Add topic