Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Rotavirus
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Structural proteins ==== [[File:Rotavirus with gold- labelled monoclonal antibody.jpg|thumb|Electron micrograph of gold nanoparticles attached to rotavirus. The small dark circular objects are gold nanoparticles coated with a [[monoclonal antibody]] specific for rotavirus protein VP6.|alt=An electron micrograph of many rotavirus particles, two of which have several smaller, black spheres which appear to be attached to them|left]]VP1 is located in the core of the virus particle and is an [[RNA-dependent RNA polymerase]] [[enzyme]].<ref name="pmid17657346">{{cite journal |vauthors=Vásquez-del Carpió R, Morales JL, Barro M, Ricardo A, Spencer E |title=Bioinformatic prediction of polymerase elements in the rotavirus VP1 protein |journal=Biological Research |volume=39 |issue=4 |pages=649–659 |year=2006 |pmid=17657346 |doi=10.4067/S0716-97602006000500008 |doi-access=free }}</ref> In an infected cell this enzyme produces mRNA transcripts for the synthesis of viral proteins and produces copies of the rotavirus genome RNA segments for newly produced virus particles.<ref name="pmid22595300">{{cite journal |vauthors=Trask SD, Ogden KM, Patton JT |title=Interactions among capsid proteins orchestrate rotavirus particle functions |journal=Current Opinion in Virology |volume=2 |issue=4 |pages=373–379 |year=2012 |pmid=22595300 |pmc=3422376 |doi=10.1016/j.coviro.2012.04.005 }}</ref> VP2 forms the core layer of the virion and binds the RNA genome.<ref name="pmid15010217">{{cite journal |vauthors=Taraporewala ZF, Patton JT |title=Nonstructural proteins involved in genome packaging and replication of rotaviruses and other members of the Reoviridae |journal=Virus Research |volume=101 |issue=1 |pages=57–66 |year=2004 |pmid=15010217 |doi=10.1016/j.virusres.2003.12.006 |url=https://zenodo.org/record/1259439}}</ref> VP3 is part of the inner core of the virion and is an enzyme called [[guanylyl transferase]]. This is a [[capping enzyme]] that catalyses the formation of the [[5' cap]] in the [[post-transcriptional modification]] of mRNA.<ref name="isbn0-12-375147-02">{{cite book |vauthors=Angel J, Franco MA, Greenberg HB |veditors=Mahy BW, Van Regenmortel MH |title=Desk Encyclopedia of Human and Medical Virology |publisher=Academic Press |location=Boston |year=2009 |page=277 |isbn=978-0-12-375147-8}}</ref> The cap stabilises viral mRNA by protecting it from [[nucleic acid]] degrading enzymes called [[nucleases]].<ref name="pmid20025612">{{cite journal |vauthors=Cowling VH |title=Regulation of mRNA cap methylation |journal=The Biochemical Journal |volume=425 |issue=2 |pages=295–302 |year=2009 |pmid=20025612 |pmc=2825737 |doi=10.1042/BJ20091352 }}</ref> VP4 is on the surface of the virion that protrudes as a spike.<ref name="pmid16571811">{{cite journal |vauthors=Gardet A, Breton M, Fontanges P, Trugnan G, Chwetzoff S |title=Rotavirus spike protein VP4 binds to and remodels actin bundles of the epithelial brush border into actin bodies |journal=Journal of Virology |volume=80 |issue=8 |pages=3947–3456 |year=2006 |pmid=16571811 |doi=10.1128/JVI.80.8.3947-3956.2006 |pmc=1440440}}</ref> It binds to molecules on the surface of cells called [[Receptor (biochemistry)|receptors]] and drives the entry of the virus into the cell.<ref name="pmid12234525">{{cite journal |vauthors=Arias CF, Isa P, Guerrero CA, Méndez E, Zárate S, López T, Espinosa R, Romero P, López S |title=Molecular biology of rotavirus cell entry |journal=Archives of Medical Research |volume=33 |issue=4 |pages=356–361 |year=2002 |pmid=12234525 |doi=10.1016/S0188-4409(02)00374-0}}</ref> VP4 has to be modified by the [[protease]] enzyme [[trypsin]], which is found in the gut, into VP5* and VP8* before the virus is infectious.<ref name="pmid15010218">{{cite journal |vauthors=Jayaram H, Estes MK, Prasad BV |title=Emerging themes in rotavirus cell entry, genome organization, transcription and replication |journal=Virus Research |volume=101 |issue=1 |pages=67–81 |year=2004 |pmid=15010218 |doi=10.1016/j.virusres.2003.12.007}}</ref> VP4 determines how [[virulent]] the virus is and it determines the P-type of the virus.<ref name="pmid12167342">{{cite journal |vauthors=Hoshino Y, Jones RW, Kapikian AZ |title=Characterization of neutralization specificities of outer capsid spike protein VP4 of selected murine, lapine, and human rotavirus strains |journal=Virology |volume=299 |issue=1 |pages=64–71 |year=2002 |pmid=12167342 |doi=10.1006/viro.2002.1474|doi-access=free }}</ref> In humans there is an association between the [[blood group]] ([[Lewis antigen system]], [[ABO blood group system]] and [[secretor status]]) and susceptibility to infection. Non-secretors seem resistant to infection by types P[4] and P[8], indicating that blood group antigens are the receptors for these genotypes.<ref name="pmid24523471">{{cite journal |vauthors=Van Trang N, Vu HT, Le NT, Huang P, Jiang X, Anh DD |title=Association between norovirus and rotavirus infection and histo-blood group antigen types in Vietnamese children |journal=Journal of Clinical Microbiology |volume=52 |issue=5 |pages=1366–1374 |year=2014 |pmid=24523471 |pmc=3993640 |doi=10.1128/JCM.02927-13 }}</ref> This resistance is dependent on the rotavirus genotype.<ref name="pmid32192193">{{cite journal |vauthors=Sharma S, Hagbom M, Svensson L, Nordgren J |title=The Impact of Human Genetic Polymorphisms on Rotavirus Susceptibility, Epidemiology, and Vaccine Take |journal=Viruses |volume=12 |issue=3 |date=March 2020 |page=324 |pmid=32192193 |pmc=7150750 |doi=10.3390/v12030324 |url=|doi-access=free }}</ref> VP6 forms the bulk of the capsid. It is highly [[antigen]]ic and can be used to identify rotavirus species.<ref name="pmid9015109" /> This protein is used in laboratory tests for rotavirus infections.<ref name="pmid6321549">{{cite journal |vauthors=Beards GM, Campbell AD, Cottrell NR, Peiris JS, Rees N, Sanders RC, Shirley JA, Wood HC, Flewett TH |title=Enzyme-linked immunosorbent assays based on polyclonal and monoclonal antibodies for rotavirus detection |journal=Journal of Clinical Microbiology |volume=19 |issue=2 |pages=248–54 |year=1984|doi=10.1128/JCM.19.2.248-254.1984 |pmid=6321549 |url=http://jcm.asm.org/cgi/reprint/19/2/248 |format=PDF |pmc=271031 }}</ref> VP7 is a [[glycoprotein]] that forms the outer surface of the virion. Apart from its structural functions, it determines the G-type of the strain and, along with VP4, is involved in [[Immunity (medical)|immunity]] to infection.<ref name="pmid16913048" />
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Rotavirus
(section)
Add topic