Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Quadratic programming
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Equality constraints=== Quadratic programming is particularly simple when {{mvar|Q}} is [[positive definite matrix|positive definite]] and there are only equality constraints; specifically, the solution process is linear. By using [[Lagrange multipliers]] and seeking the extremum of the Lagrangian, it may be readily shown that the solution to the equality constrained problem :<math>\text{Minimize} \quad \tfrac{1}{2} \mathbf{x}^\mathrm{T} Q\mathbf{x} + \mathbf{c}^\mathrm{T} \mathbf{x}</math> :<math>\text{subject to} \quad E\mathbf{x} =\mathbf{d}</math> is given by the linear system :<math> \begin{bmatrix} Q & E^\top \\ E & 0 \end{bmatrix} \begin{bmatrix} \mathbf x \\ \lambda \end{bmatrix} = \begin{bmatrix} -\mathbf c \\ \mathbf d \end{bmatrix} </math> where {{math|Ξ»}} is a set of Lagrange multipliers which come out of the solution alongside {{math|'''x'''}}. The easiest means of approaching this system is direct solution (for example, [[LU factorization]]), which for small problems is very practical. For large problems, the system poses some unusual difficulties, most notably that the problem is never positive definite (even if {{mvar|Q}} is), making it potentially very difficult to find a good numeric approach, and there are many approaches to choose from dependent on the problem. If the constraints don't couple the variables too tightly, a relatively simple attack is to change the variables so that constraints are unconditionally satisfied. For example, suppose {{math|1='''d''' = 0}} (generalizing to nonzero is straightforward). Looking at the constraint equations: :<math>E\mathbf{x} = 0</math> introduce a new variable {{math|'''y'''}} defined by :<math>Z \mathbf{y} = \mathbf x</math> where {{math|'''y'''}} has dimension of {{math|'''x'''}} minus the number of constraints. Then :<math>E Z \mathbf{y} = \mathbf 0</math> and if {{mvar|Z}} is chosen so that {{math|1=''EZ'' = 0}} the constraint equation will be always satisfied. Finding such {{mvar|Z}} entails finding the [[null space]] of {{mvar|E}}, which is more or less simple depending on the structure of {{mvar|E}}. Substituting into the quadratic form gives an unconstrained minimization problem: :<math>\tfrac{1}{2} \mathbf{x}^\top Q\mathbf{x} + \mathbf{c}^\top \mathbf{x} \quad \implies \quad \tfrac{1}{2} \mathbf{y}^\top Z^\top Q Z \mathbf{y} + \left(Z^\top \mathbf{c}\right)^\top \mathbf{y}</math> the solution of which is given by: :<math>Z^\top Q Z \mathbf{y} = -Z^\top \mathbf{c}</math> Under certain conditions on {{mvar|Q}}, the reduced matrix {{math|''Z''<sup>T</sup>''QZ''}} will be positive definite. It is possible to write a variation on the [[conjugate gradient method]] which avoids the explicit calculation of {{mvar|Z}}.<ref>{{Cite journal | last1 = Gould| first1 = Nicholas I. M.| last2 = Hribar| first2 = Mary E.| last3 = Nocedal| first3 = Jorge|date=April 2001| title = On the Solution of Equality Constrained Quadratic Programming Problems Arising in Optimization| journal = SIAM J. Sci. Comput.| pages = 1376β1395| volume = 23| issue = 4| citeseerx = 10.1.1.129.7555| doi = 10.1137/S1064827598345667| bibcode = 2001SJSC...23.1376G}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Quadratic programming
(section)
Add topic