Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Progesterone
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Reproductive system=== [[File:Endometrium ocp use3.jpg|thumb|right|[[Micrograph]] showing changes to the [[endometrium]] due to progesterone ([[decidualization]]) [[H&E stain]].]] Progesterone has key effects via non-genomic signalling on human sperm as they migrate through the female reproductive tract before [[fertilization]] occurs, though the receptor(s) as yet remain unidentified.<ref name="pmid17447210">{{cite journal | vauthors = Correia JN, Conner SJ, Kirkman-Brown JC | title = Non-genomic steroid actions in human spermatozoa. "Persistent tickling from a laden environment" | journal = Seminars in Reproductive Medicine | volume = 25 | issue = 3 | pages = 208β219 | date = May 2007 | pmid = 17447210 | doi = 10.1055/s-2007-973433 | s2cid = 260318879 }}</ref> Detailed characterisation of the events occurring in sperm in response to progesterone has elucidated certain events including intracellular calcium transients and maintained changes,<ref name="pmid10837122">{{cite journal | vauthors = Kirkman-Brown JC, Bray C, Stewart PM, Barratt CL, Publicover SJ | title = Biphasic elevation of [Ca(2+)](i) in individual human spermatozoa exposed to progesterone | journal = Developmental Biology | volume = 222 | issue = 2 | pages = 326β335 | date = June 2000 | pmid = 10837122 | doi = 10.1006/dbio.2000.9729 | doi-access = free }}</ref> slow calcium oscillations,<ref name="pmid14606954">{{cite journal | vauthors = Kirkman-Brown JC, Barratt CL, Publicover SJ | title = Slow calcium oscillations in human spermatozoa | journal = The Biochemical Journal | volume = 378 | issue = Pt 3 | pages = 827β832 | date = March 2004 | pmid = 14606954 | pmc = 1223996 | doi = 10.1042/BJ20031368 }}</ref> now thought to possibly regulate motility.<ref name="pmid15322137">{{cite journal | vauthors = Harper CV, Barratt CL, Publicover SJ | title = Stimulation of human spermatozoa with progesterone gradients to simulate approach to the oocyte. Induction of [Ca(2+)](i) oscillations and cyclical transitions in flagellar beating | journal = The Journal of Biological Chemistry | volume = 279 | issue = 44 | pages = 46315β46325 | date = October 2004 | pmid = 15322137 | doi = 10.1074/jbc.M401194200 | doi-access = free }}</ref> It is produced by the ovaries.<ref name=Marieb>{{cite book | vauthors = Marieb E | title = Anatomy & physiology | publisher = Benjamin-Cummings | page= 903 | year = 2013 | isbn = 9780321887603 }}</ref> Progesterone has also been shown to demonstrate effects on octopus spermatozoa.<ref name="pmid11335951">{{cite journal | vauthors = Tosti E, Di Cosmo A, Cuomo A, Di Cristo C, Gragnaniello G | title = Progesterone induces activation in Octopus vulgaris spermatozoa | journal = Molecular Reproduction and Development | volume = 59 | issue = 1 | pages = 97β105 | date = May 2001 | pmid = 11335951 | doi = 10.1002/mrd.1011 | s2cid = 28390608 }}</ref> Progesterone is sometimes called the "[[Pregnancy hormones|hormone of pregnancy]]",<ref name="colostate">{{cite web | url = http://www.vivo.colostate.edu/hbooks/pathphys/reprod/placenta/endocrine.html | title = Placental Hormones | access-date = 12 March 2008 | last = Bowen | first = R. | date = 6 August 2000 | archive-date = 17 May 2007 | archive-url = https://web.archive.org/web/20070517165244/http://www.vivo.colostate.edu/hbooks/pathphys/reprod/placenta/endocrine.html | url-status = dead }}</ref> and it has many roles relating to the development of the fetus: * Progesterone converts the [[endometrium]] to its secretory stage to prepare the uterus for implantation. At the same time progesterone affects the [[vaginal epithelium]] and [[Cervix#Cervical mucus|cervical mucus]], making it thick and impenetrable to [[sperm]]. Progesterone is anti-[[mitosis|mitogenic]] in endometrial epithelial cells, and as such, mitigates the tropic effects of [[estrogen]].<ref name="pmid25406186">{{cite journal | vauthors = Patel B, Elguero S, Thakore S, Dahoud W, Bedaiwy M, Mesiano S | title = Role of nuclear progesterone receptor isoforms in uterine pathophysiology | journal = Human Reproduction Update | volume = 21 | issue = 2 | pages = 155β173 | year = 2014 | pmid = 25406186 | pmc = 4366574 | doi = 10.1093/humupd/dmu056 }}</ref> If [[Pregnancy|pregnancy]] does not occur, progesterone levels will decrease, leading to [[menstruate|menstruation]]. Normal menstrual bleeding is progesterone-withdrawal bleeding. If ovulation does not occur and the [[corpus luteum]] does not develop, levels of progesterone may be low, leading to [[Dysfunctional uterine bleeding#Anovulatory DUB|anovulatory dysfunctional uterine bleeding.]] * During implantation and [[gestation]], progesterone appears to decrease the maternal [[immune system|immune]] response to allow for the acceptance of the pregnancy.<ref name="pmid27662646">{{cite journal | vauthors = Di Renzo GC, Giardina I, Clerici G, Brillo E, Gerli S | title = Progesterone in normal and pathological pregnancy | journal = Hormone Molecular Biology and Clinical Investigation | volume = 27 | issue = 1 | pages = 35β48 | date = July 2016 | pmid = 27662646 | doi = 10.1515/hmbci-2016-0038 | s2cid = 32239449 }}</ref> * Progesterone decreases contractility of the uterine [[smooth muscle]].<ref name="colostate"/> This effect contributes to prevention of [[preterm labor]].<ref name="pmid27662646" /> Studies have shown that in individuals who are pregnant with a single fetus, asymptomatic in the prenatal stage, and at a high risk of giving pre-term birth spontaneously, vaginal progesterone medication has been found to be effective in preventing spontaneous pre-term birth. Individuals who are at a high risk of giving pre-term birth spontaneously are those who have a short cervix of less than 25 mm or have previously given pre-term birth spontaneously. Although pre-term births are generally considered to be less than 37 weeks, these studies found that vaginal progesterone is associated with fewer pre-term births of less than 34 weeks.<ref name="pmid35168930">{{cite journal | vauthors = Care A, Nevitt SJ, Medley N, Donegan S, Good L, Hampson L, Tudur Smith C, Alfirevic Z | display-authors = 6 | title = Interventions to prevent spontaneous preterm birth in women with singleton pregnancy who are at high risk: systematic review and network meta-analysis | journal = BMJ | volume = 376 | pages = e064547 | date = February 2022 | pmid = 35168930 | pmc = 8845039 | doi = 10.1136/bmj-2021-064547 }}</ref> * A drop in progesterone levels is possibly one step that facilitates the onset of [[labor (childbirth)|labor]].{{cn|date=February 2025}} * In addition, progesterone inhibits [[lactation]] during pregnancy. The fall in progesterone levels following delivery is one of the triggers for milk production.{{cn|date=February 2025}} The [[fetus]] [[metabolize]]s placental progesterone in the production of [[adrenal]] steroids.<ref name="pmid30763313"/>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Progesterone
(section)
Add topic