Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Orbital resonance
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== N-body mean motion resonance ==== MMRs involving more than two bodies have been observed in the Solar System. For example, there are [[three-body problem|three-body]] MMRs involving Jupiter, Saturn, and some main-belt asteroids. These three-body MMRs are unstable and main-belt asteroids involved in these three-body MMRs have [[Chaos theory|chaotic]] orbital evolutions.<ref name="Nesvorny1998"/> A ''Laplace resonance'' is a three-body MMR with a 1:2:4 orbital period ratio (equivalent to a 4:2:1 ratio of orbits). The term arose because [[Pierre-Simon Laplace]] discovered that such a resonance governed the motions of Jupiter's moons [[Io (moon)|Io]], [[Europa (moon)|Europa]], and [[Ganymede (moon)|Ganymede]]. It is now also often applied to other 3-body resonances with the same ratios,<ref name="Gargaud2011">{{cite book |last1=Barnes |first1=R. |year=2011 |chapter=Laplace Resonance |editor-last=Gargaud |editor-first=M. |title=Encyclopedia of Astrobiology |chapter-url=https://books.google.com/books?id=oEq1y9GIcr0C&pg=PA905 |pages=905β906 |publisher=[[Springer Science+Business Media]] |isbn=978-3-642-11271-3 |doi=10.1007/978-3-642-11274-4_864}}</ref> such as that between the [[extrasolar planet]]s [[Gliese 876]] c, b, and e.<ref name="rivera2010" /><ref>{{cite journal |last1=Nelson |first1=B. E. |last2=Robertson |first2=P. M. |last3=Payne |first3=M. J. |last4=Pritchard |first4=S. M. |last5=Deck |first5=K. M. |last6=Ford |first6=E. B. |last7=Wright |first7=J. T. |last8=Isaacson |first8=H. T. |date=2015 |title=An empirically derived three-dimensional Laplace resonance in the Gliese 876 planetary system |journal=Monthly Notices of the Royal Astronomical Society |volume=455 |issue=3 |pages=2484β2499 |doi=10.1093/mnras/stv2367 |doi-access=free |arxiv=1504.07995 }}</ref><ref name="MartiGiuppone2013">{{cite journal |last1=Marti |first1=J. G. |last2=Giuppone |first2=C. A. |last3=Beauge |first3=C. |year=2013 |title=Dynamical analysis of the Gliese-876 Laplace resonance |journal=[[Monthly Notices of the Royal Astronomical Society]] |volume=433 |issue=2 |pages=928β934 |arxiv=1305.6768 |bibcode=2013MNRAS.433..928M |doi=10.1093/mnras/stt765|doi-access=free |s2cid=118643833 }}</ref> Three-body resonances involving other simple integer ratios have been termed "Laplace-like"<ref name="ShowalterHamilton2015" /> or "Laplace-type".<ref name="MurrayDermott1999">{{cite book |last1=Murray |first1=C. D. |last2=Dermott |first2=S. F. |year=1999 |title=Solar System Dynamics |url=https://books.google.com/books?id=aU6vcy5L8GAC&pg=PA17 |page=17 |publisher=[[Cambridge University Press]] |isbn=978-0-521-57597-3}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Orbital resonance
(section)
Add topic