Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Nuclear meltdown
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Standard failure modes=== If the melted core penetrates the pressure vessel, there are theories and speculations as to what may then occur. In modern Russian plants, there is a "core catching device" in the bottom of the containment building. The melted core is supposed to hit a thick layer of a "sacrificial metal" that would melt, dilute the core and increase the heat conductivity, and finally the diluted core can be cooled down by water circulating in the floor. There has never been any full-scale testing of this device, however.<ref>{{cite news|url=https://www.nytimes.com/2011/03/23/business/energy-environment/23chernobyl.html|title=After Chernobyl, Russia's Nuclear Industry Emphasizes Reactor Safety|first=Andrew E.|last=Kramer|work=The New York Times |date=22 March 2011|via=NYTimes.com}}</ref> In Western plants there is an airtight containment building. Though radiation would be at a high level within the containment, doses outside of it would be lower. Containment buildings are designed for the orderly release of pressure without releasing radionuclides, through a pressure release valve and filters. Hydrogen/oxygen recombiners also are installed within the containment to prevent gas explosions. In a melting event, one spot or area on the RPV will become hotter than other areas, and will eventually melt. When it melts, corium will pour into the cavity under the reactor. Though the cavity is designed to remain dry, several NUREG-class documents advise operators to flood the cavity in the event of a fuel melt incident. This water will become steam and pressurize the containment. Automatic water sprays will pump large quantities of water into the steamy environment to keep the pressure down. Catalytic recombiners will rapidly convert the hydrogen and oxygen back into water. One debated positive effect of the corium falling into water is that it is cooled and returns to a solid state. Extensive water spray systems within the containment along with the ECCS, when it is reactivated, will allow operators to spray water within the containment to cool the core on the floor and reduce it to a low temperature. These procedures are intended to prevent release of radioactivity. In the Three Mile Island event in 1979, a theoretical person standing at the plant property line during the entire event would have received a dose of approximately 2 millisieverts (200 millirem), between a chest X-ray's and a CT scan's worth of radiation. This was due to outgassing by an uncontrolled system that, today, would have been backfitted with activated carbon and HEPA filters to prevent radionuclide release. In the Fukushima incident, however, this design failed. Despite the efforts of the operators at the Fukushima Daiichi nuclear power plant to maintain control, the reactor cores in units 1β3 overheated, the nuclear fuel melted and the three containment vessels were breached. Hydrogen was released from the reactor pressure vessels, leading to explosions inside the reactor buildings in units 1, 3 and 4 that damaged structures and equipment and injured personnel. Radionuclides were released from the plant to the atmosphere and were deposited on land and on the ocean. There were also direct releases into the sea.<ref>{{Cite web |title=Fukushima Daiichi Accident - World Nuclear Association |url=https://www.world-nuclear.org/information-library/safety-and-security/safety-of-plants/fukushima-daiichi-accident.aspx |access-date=2024-04-24 |website=www.world-nuclear.org}} </ref><ref name=":0">{{cite web|url=https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1710-ReportByTheDG-Web.pdf|title=The Fukushima Daiichi Accident. Report by the Director General|date=2015|publisher=International Atomic Energy Agency|access-date=24 February 2018}}</ref> As the natural decay heat of the corium eventually reduces to an equilibrium with convection and conduction to the containment walls, it becomes cool enough for water spray systems to be shut down and the reactor to be put into safe storage. The containment can be sealed with release of extremely limited offsite radioactivity and release of pressure. After perhaps a decade for fission products to decay, the containment can be reopened for decontamination and demolition. Another scenario sees a buildup of potentially explosive hydrogen, but [[passive autocatalytic recombiner]]s inside the containment are designed to prevent this. In Fukushima, the containments were filled with inert nitrogen, which prevented hydrogen from burning; the hydrogen leaked from the containment to the reactor building, however, where it mixed with air and exploded.<ref name=":0" /> During the 1979 Three Mile Island accident, a hydrogen bubble formed in the pressure vessel dome. There were initial concerns that the hydrogen might ignite and damage the pressure vessel or even the containment building; but it was soon realized that lack of oxygen prevented burning or explosion.<ref name="US NRC TMI Backgrounder">{{cite web|title=Backgrounder on the Three Mile Island Accident|url=https://www.nrc.gov/reading-rm/doc-collections/fact-sheets/3mile-isle.html#summary|publisher=United States Nuclear Regulatory Commission|access-date=1 December 2013}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Nuclear meltdown
(section)
Add topic