Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Microorganism
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Classification and structure== Microorganisms can be found almost anywhere on [[Earth]]. [[Bacteria]] and [[archaea]] are almost always microscopic, while a number of [[eukaryote]]s are also microscopic, including most [[Protista|protists]], some [[fungus|fungi]], as well as some [[micro-animal]]s and plants. [[Virus]]es are generally regarded as [[Non-cellular life|not living]] and therefore not considered to be microorganisms, although a subfield of [[microbiology]] is [[virology]], the study of viruses.<ref>{{Cite book |title=eLS|last=Lim|first=Daniel V. |date=2001 |publisher=John Wiley |isbn=978-0-470-01590-2 |doi=10.1038/npg.els.0000459|chapter = Microbiology}}</ref><ref>{{Cite web|url=http://www.highveld.com/microbiology/what-is-microbiology.html|title=What is Microbiology? |website=highveld.com |access-date=2017-06-02|archive-url=https://web.archive.org/web/20150215180557/http://www.highveld.com/microbiology/what-is-microbiology.html |archive-date=2015-02-15}}</ref><ref>{{cite book |last=Cann |first=Alan |title=Principles of Molecular Virology |year=2011 |publisher=Academic Press |isbn=978-0-12-384939-7 |edition=5th}}</ref> ===Evolution=== {{further|Timeline of the evolutionary history of life|Earliest known life forms}} {{PhylomapB||caption=[[Carl Woese]]'s 1990 [[phylogenetic tree]] based on [[rRNA]] data shows the domains of [[Bacteria]], [[Archaea]], and [[Eukaryota]]. All are microorganisms except some eukaryote groups.|size=325px}} Single-celled microorganisms were the [[Origin of life|first forms of life]] to develop on Earth, approximately 3.5 billion years ago.<ref>{{Cite journal |author=Schopf, J. |title=Fossil evidence of Archaean life |journal=Philos Trans R Soc Lond B Biol Sci |volume=361 |issue=1470 |pages=869–885 |year=2006 |pmid=16754604 |doi=10.1098/rstb.2006.1834 |pmc=1578735}}</ref><ref>{{Cite journal |last=Altermann |first=W. |last2=Kazmierczak |first2=J. |title=Archean microfossils: a reappraisal of early life on Earth |journal=Res Microbiol |volume=154 |issue=9 |pages=611–617 |year=2003 |pmid=14596897 | doi=10.1016/j.resmic.2003.08.006|doi-access=free }}</ref><ref>{{Cite journal|last=Cavalier-Smith |first=T. |author-link=Thomas Cavalier-Smith |title=Cell evolution and Earth history: stasis and revolution |journal=Philos Trans R Soc Lond B Biol Sci |volume=361 |issue=1470 |pages=969–1006 |year=2006 |pmid=16754610 |doi=10.1098/rstb.2006.1842 |pmc=1578732}}</ref> Further evolution was slow,<ref>{{Cite journal| last=Schopf |first=J. | title=Disparate rates, differing fates: tempo and mode of evolution changed from the Precambrian to the Phanerozoic | pmc=44277| journal=PNAS | volume=91 | issue=15 | pages=6735–6742 | year=1994 | pmid=8041691 | doi=10.1073/pnas.91.15.6735 | bibcode=1994PNAS...91.6735S| doi-access=free }}</ref> and for about 3 billion years in the [[Precambrian]] [[Eon (geology)|eon]], (much of the history of [[life|life on Earth]]), all [[organism]]s were microorganisms.<ref>{{Cite journal|author=Stanley, S. |title=An Ecological Theory for the Sudden Origin of Multicellular Life in the Late Precambrian |journal=PNAS |volume=70 |issue=5 |pages=1486–1489 |date=May 1973 |pmid=16592084 |pmc=433525 | doi=10.1073/pnas.70.5.1486 |bibcode=1973PNAS...70.1486S |doi-access=free }}</ref><ref>{{Cite journal |author1=DeLong, E. |author2=Pace, N. | title=Environmental diversity of bacteria and archaea | journal=Syst Biol | volume=50 | issue=4 | pages=470–478 | year=2001 |pmid=12116647 | doi=10.1080/106351501750435040|citeseerx=10.1.1.321.8828 }}</ref> Bacteria, algae and fungi have been identified in [[amber]] that is 220 million years old, which shows that the [[Morphology (biology)|morphology]] of microorganisms has changed little since at least the [[Triassic]] period.<ref>{{Cite journal |author=Schmidt, A. |author2=Ragazzi, E. |author3=Coppellotti, O. |author4=Roghi, G. | title=A microworld in Triassic amber | journal=Nature | volume=444 | issue=7121 | page=835 | year=2006 | pmid=17167469 | doi=10.1038/444835a |bibcode=2006Natur.444..835S |s2cid=4401723 | doi-access=free }}</ref> The newly discovered [[Nickel#Biological role|biological role played by nickel]], however – especially that brought about by [[Types of volcanic eruption|volcanic eruptions]] from the [[Siberian Traps]] – may have accelerated the evolution of [[methanogen]]s towards the end of the [[Permian–Triassic extinction event]].<ref>{{cite web |url= http://www.space.com/26654-microbe-innovation-started-largest-earth-extinction.html |title= Microbe's Innovation May Have Started Largest Extinction Event on Earth |last= Schirber |first=Michael |date= 27 July 2014 |publisher=Astrobiology Magazine |website= Space.com |quote=That spike in nickel allowed methanogens to take off.}}</ref> Microorganisms tend to have a relatively fast rate of evolution. Most microorganisms can reproduce rapidly, and bacteria are also able to freely exchange genes through [[Bacterial conjugation|conjugation]], [[Transformation (genetics)|transformation]] and [[Transduction (genetics)|transduction]], even between widely divergent species.<ref>{{Cite journal| author=Wolska, K. | title=Horizontal DNA transfer between bacteria in the environment | journal=Acta Microbiol Pol | volume=52 | issue=3 | pages=233–243 | year=2003 |pmid=14743976}}</ref> This [[horizontal gene transfer]], coupled with a high [[mutation]] rate and other means of transformation, allows microorganisms to swiftly [[biological evolution|evolve]] (via [[natural selection]]) to survive in new environments and respond to [[stressors|environmental stresses]]. This rapid evolution is important in medicine, as it has led to the development of [[multidrug resistance|multidrug resistant]] [[pathogenic bacteria]], ''superbugs'', that are [[antimicrobial resistance|resistant to antibiotics]].<ref>{{Cite journal |author=Enright, M. |author2=Robinson, D. |author3=Randle, G. |author4=Feil, E. |author5=Grundmann, H. |author6=Spratt, B. | title=The evolutionary history of methicillin-resistant ''Staphylococcus aureus'' (MRSA) | journal=Proc Natl Acad Sci USA | volume=99 | issue=11 | pages=7687–7692 |date=May 2002 | pmid=12032344 |pmc=124322 | doi=10.1073/pnas.122108599|bibcode=2002PNAS...99.7687E |doi-access=free }}</ref> A possible transitional form of microorganism between a prokaryote and a eukaryote was discovered in 2012 by Japanese scientists. ''[[Parakaryon myojinensis]]'' is a unique microorganism larger than a typical prokaryote, but with nuclear material enclosed in a membrane as in a eukaryote, and the presence of endosymbionts. This is seen to be the first plausible evolutionary form of microorganism, showing a stage of development from the prokaryote to the eukaryote.<ref name="Parakaryon">{{cite web |title=Deep sea microorganisms and the origin of the eukaryotic cell |url=http://protistology.jp/journal/jjp47/JJP47YAMAGUCHI.pdf |access-date=24 October 2017}}</ref><ref name="Yamaguchi">{{cite journal|last1=Yamaguchi |display-authors=et al|first1=Masashi |title=Prokaryote or eukaryote? A unique microorganism from the deep sea |issue=6 |journal=Journal of Electron Microscopy |volume=61 |pages=423–431 |doi=10.1093/jmicro/dfs062 |pmid=23024290 |date=1 December 2012}}</ref> ===Archaea=== {{main|Archaea}} {{further|Prokaryote}} Archaea are [[prokaryote|prokaryotic]] unicellular organisms, and form the first domain of life in [[Carl Woese]]'s [[three-domain system]]. A prokaryote is defined as having no [[cell nucleus]] or other [[lipid bilayer|membrane bound]]-[[organelle]]. Archaea share this defining feature with the bacteria with which they were once grouped. In 1990 the microbiologist Woese proposed the three-domain system that divided living things into bacteria, archaea and eukaryotes,<ref>{{Cite journal |author1=Woese, C. |author1-link=Carl Woese | author2=Kandler, O. | author3=Wheelis, M. | title=Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya | doi= 10.1073/pnas.87.12.4576 | journal=Proc Natl Acad Sci USA | volume=87 | issue=12 | pages=4576–4579 | year=1990 | pmid=2112744 | pmc=54159 | bibcode=1990PNAS...87.4576W|doi-access=free }}</ref> and thereby split the prokaryote domain. Archaea differ from bacteria in both their genetics and biochemistry. For example, while bacterial [[cell membrane]]s are made from [[phospholipid|phosphoglycerides]] with [[ester]] bonds, Achaean membranes are made of [[ether lipid]]s.<ref>{{Cite journal |author1=De Rosa, M. |author2=Gambacorta, A. | author3=Gliozzi, A. |title=Structure, biosynthesis, and physicochemical properties of archaebacterial lipids |journal=Microbiol. Rev. |volume=50 |issue=1 |pages=70–80 |date=1 March 1986|pmid=3083222 |pmc=373054 |doi=10.1128/mmbr.50.1.70-80.1986}}</ref> Archaea were originally described as [[extremophile]]s living in [[extreme environment]]s, such as [[hot spring]]s, but have since been found in all types of [[habitat]]s.<ref>{{Cite journal |author1=Robertson, C. |author2=Harris, J. |author3=Spear, J. |author4=Pace, N. | title=Phylogenetic diversity and ecology of environmental Archaea | journal=Curr Opin Microbiol | volume=8 | issue=6 | pages=638–642 | year=2005 | pmid=16236543 | doi=10.1016/j.mib.2005.10.003}}</ref> Only now are scientists beginning to realize how common archaea are in the environment, with [[Thermoproteota]] (formerly Crenarchaeota) being the most common form of life in the ocean, dominating ecosystems below {{convert|150|m}} in depth.<ref>{{Cite journal |author=Karner, M. B. |author2=DeLong, E. F. |author3=Karl, D. M. |title=Archaeal dominance in the mesopelagic zone of the Pacific Ocean |journal=Nature |volume=409 |issue=6819 |pages=507–510 |year=2001 |pmid=11206545 | doi=10.1038/35054051|bibcode=2001Natur.409..507K |s2cid=6789859 }}</ref><ref>{{Cite journal |author=Sinninghe Damsté, J. S. |author2=Rijpstra, W. I. |author3=Hopmans, E. C. |author4=Prahl, F. G. |author5=Wakeham, S. G. |author6=Schouten, S. |title=Distribution of Membrane Lipids of Planktonic Crenarchaeota in the Arabian Sea |journal=Appl. Environ. Microbiol. |volume=68 |issue=6 |pages=2997–3002 |date=June 2002 |pmid=12039760 |pmc=123986 | doi=10.1128/AEM.68.6.2997-3002.2002|bibcode=2002ApEnM..68.2997S }}</ref> These organisms are also common in soil and play a vital role in [[ammonia]] oxidation.<ref name=LeiningerUrich2006>{{cite journal |last1=Leininger |first1=S. |last2=Urich |first2=T. |last3=Schloter |first3=M. |last4=Schwark |first4=L.|last5=Qi|first5=J. |last6=Nicol |first6=G. W. |last7=Prosser |first7=J. I. |author-link7=James I. Prosser |last8=Schuster |first8=S. C. |last9=Schleper |first9=C.|title=Archaea predominate among ammonia-oxidizing prokaryotes in soils |journal=[[Nature (journal)|Nature]] |volume=442 |issue=7104 |year=2006|pages=806–809|pmid= 16915287 |doi=10.1038/nature04983|bibcode=2006Natur.442..806L|s2cid=4380804 }}</ref> The combined domains of archaea and bacteria make up the most diverse and abundant group of [[organism]]s on Earth and inhabit practically all environments where the temperature is below +{{convert|140|°C}}. They are found in [[water]], [[soil]], [[Earth's atmosphere|air]], as the [[microbiome]] of an organism, [[hot spring]]s and even deep beneath the Earth's crust in [[Rock (geology)|rocks]].<ref name=Gold>{{Cite journal|author=Gold, T. |title=The deep, hot biosphere |journal=Proc. Natl. Acad. Sci. USA |volume=89 |issue=13 |pages=6045–6049 |year=1992 |pmid=1631089 |doi= 10.1073/pnas.89.13.6045 |pmc=49434 |bibcode=1992PNAS...89.6045G|doi-access=free }}</ref> The number of prokaryotes is estimated to be around five nonillion, or 5 × 10<sup>30</sup>, accounting for at least half the [[Biomass (ecology)|biomass]] on Earth.<ref>{{Cite journal|author=Whitman, W. |author2=Coleman, D. |author3=Wiebe, W. | title=Prokaryotes: The unseen majority | doi= 10.1073/pnas.95.12.6578 | journal=PNAS | volume=95 | issue=12 | pages=6578–6583 | year=1998 | pmid=9618454 | pmc=33863|bibcode=1998PNAS...95.6578W |doi-access=free }}</ref> The biodiversity of the prokaryotes is unknown, but may be very large. A May 2016 estimate, based on laws of scaling from known numbers of species against the size of organism, gives an estimate of perhaps 1 trillion species on the planet, of which most would be microorganisms. Currently, only one-thousandth of one percent of that total have been described.<ref name="NSF-2016002">{{cite news |title=Researchers find that Earth may be home to 1 trillion species |url=https://www.nsf.gov/news/news_summ.jsp?cntn_id=138446 |date=2 May 2016 |work=[[National Science Foundation]] |access-date=6 May 2016 }}</ref> [[Archaea|Archael cells]] of some species aggregate and transfer [[DNA]] from one cell to another through direct contact, particularly under stressful environmental conditions that cause [[DNA damage (naturally occurring)|DNA damage]].<ref>{{cite journal |last1=van Wolferen |first1=M.|last2=Wagner |first2=A|last3=van der Does |first3=C.|last4=Albers |first4=S. V. | year = 2016 | title = The archaeal Ced system imports DNA | journal = Proc Natl Acad Sci USA | volume = 113 | issue = 9| pages = 2496–501 | doi = 10.1073/pnas.1513740113 | pmid = 26884154 | pmc = 4780597 | bibcode = 2016PNAS..113.2496V | doi-access = free }}</ref><ref>Bernstein H, Bernstein C. Sexual communication in archaea, the precursor to meiosis. pp. 103–117 in Biocommunication of Archaea (Guenther Witzany, ed.) 2017. Springer International Publishing {{ISBN|978-3-319-65535-2}} DOI 10.1007/978-3-319-65536-9</ref> ===Bacteria=== {{Main|Bacteria}} [[File:Staphylococcus aureus 01.jpg|thumb|''[[Staphylococcus aureus]]'' bacteria magnified about 10,000×]] Like archaea, bacteria are prokaryotic – unicellular, and having no cell nucleus or other membrane-bound organelle. Bacteria are microscopic, with a few extremely rare exceptions, such as ''[[Thiomargarita namibiensis]]''.<ref>{{Cite journal |last=Schulz |first=H. |last2=Jorgensen |first2=B. | title=Big bacteria | journal=Annu Rev Microbiol | volume=55 | pages=105–137 | year =2001 |pmid=11544351 | doi=10.1146/annurev.micro.55.1.105}}</ref> Bacteria function and reproduce as individual cells, but they can often aggregate in multicellular [[Colony (biology)#Microbial colony|colonies]].<ref>{{Cite journal |author-link=James A. Shapiro |last=Shapiro |first=J. A. |title=Thinking about bacterial populations as multicellular organisms |journal=Annu. Rev. Microbiol. |volume=52 |pages=81–104 |year=1998 |pmid=9891794 |doi=10.1146/annurev.micro.52.1.81 |url=http://www.sci.uidaho.edu/newton/math501/Sp05/Shapiro.pdf |url-status=dead |archive-url=https://web.archive.org/web/20110717183759/http://www.sci.uidaho.edu/newton/math501/Sp05/Shapiro.pdf |archive-date=17 July 2011 }}</ref> Some species such as [[myxobacteria]] can aggregate into complex [[swarm]]ing structures, operating as multicellular groups as part of their [[Biological life cycle|life cycle]],<ref>{{cite journal | title=Myxobacteria: Moving, Killing, Feeding, and Surviving Together | journal=Frontiers in Microbiology| volume=7| page=781| pmid=27303375| pmc=4880591| year=2016| last1=Muñoz-Dorado| first1=J. | last2=Marcos-Torres| first2=F. J. | last3=García-Bravo | first3=E. | last4=Moraleda-Muñoz| first4=A. | last5=Pérez| first5=J. | doi=10.3389/fmicb.2016.00781| doi-access=free}}</ref> or form clusters in [[colony (biology)|bacterial colonies]] such as ''[[E. coli]]''. Their [[genome]] is usually a [[circular bacterial chromosome]] – a single loop of [[DNA]], although they can also harbor small pieces of DNA called [[plasmid]]s. These plasmids can be transferred between cells through [[bacterial conjugation]]. Bacteria have an enclosing [[Bacterial cell structure#Cell wall|cell wall]], which provides strength and rigidity to their cells. They reproduce by [[binary fission]] or sometimes by [[budding]], but do not undergo [[Meiosis|meiotic]] [[sexual reproduction]]. However, many bacterial species can transfer DNA between individual cells by a [[horizontal gene transfer]] process referred to as natural [[Transformation (genetics)|transformation]].<ref>{{cite journal |last=Johnsbor |first=O. |last2=Eldholm |first2=V. |last3=Håvarstein |first3=L. S. |title=Natural genetic transformation: prevalence, mechanisms and function |journal=Res. Microbiol. |volume=158 |issue=10 |pages=767–778 |date=December 2007 |pmid=17997281 |doi=10.1016/j.resmic.2007.09.004 |doi-access=free }}</ref> Some species form extraordinarily resilient [[endospore|spores]], but for bacteria this is a mechanism for survival, not reproduction. Under optimal conditions bacteria can grow extremely rapidly and their numbers can double as quickly as every 20 minutes.<ref>{{Cite journal| last=Eagon |first=R. | title=Pseudomonas Natriegens, a Marine Bacterium With a Generation Time of Less Than 10 Minutes | journal=J Bacteriol | volume=83 | issue=4| pages=736–737 | year =1962 | pmid=13888946 | pmc=279347| doi=10.1128/JB.83.4.736-737.1962 }}</ref> ===Eukaryotes=== {{Main|Eukaryote}} Most living things that are visible to the naked eye in their adult form are [[eukaryote]]s, including [[human]]s. However, many eukaryotes are also microorganisms. Unlike [[bacteria]] and [[archaea]], eukaryotes contain [[organelle]]s such as the [[cell nucleus]], the [[Golgi apparatus]] and [[mitochondrion|mitochondria]] in their [[cell (biology)|cells]]. The nucleus is an organelle that houses the [[DNA]] that makes up a cell's genome. DNA (Deoxyribonucleic acid) itself is arranged in complex [[chromosome]]s.<ref>[http://www.ucmp.berkeley.edu/alllife/eukaryotamm.html Eukaryota: More on Morphology.] (Retrieved 10 October 2006)</ref> [[Mitochondrion|Mitochondria]] are organelles vital in [[metabolism]] as they are the site of the [[citric acid cycle]] and [[oxidative phosphorylation]]. They evolved from [[symbiotic]] bacteria and retain a remnant genome.<ref name=Dyall>{{Cite journal |author=Dyall, S. |author2=Brown, M. |author3=Johnson, P. | title=Ancient invasions: from endosymbionts to organelles | journal=Science | volume=304 | issue=5668 | pages=253–257 | year=2004|pmid=15073369 | doi=10.1126/science.1094884|bibcode=2004Sci...304..253D |s2cid=19424594 }}</ref> Like bacteria, [[plant cell]]s have [[cell wall]]s, and contain organelles such as [[chloroplast]]s in addition to the organelles in other eukaryotes. Chloroplasts produce energy from light by [[photosynthesis]], and were also originally symbiotic bacteria.<ref name=Dyall/> Unicellular eukaryotes consist of a single [[Cell (biology)|cell]] throughout their life cycle. This qualification is significant since most [[multicellular organism|multicellular]] eukaryotes consist of a single cell called a [[zygote]] only at the beginning of their life cycles. Microbial eukaryotes can be either [[haploid]] or [[diploid]], and some organisms have multiple [[cell nucleus|cell nuclei]]. Unicellular eukaryotes usually reproduce asexually by [[mitosis]] under favorable conditions. However, under stressful conditions such as nutrient limitations and other conditions associated with DNA damage, they tend to reproduce sexually by [[meiosis]] and [[Fertilization|syngamy]].<ref name=Bernstein>{{cite book |last1=Bernstein |first1=H. |last2=Bernstein |first2=C. |last3=Michod |first3=R. E. |year=2012 |chapter-url=https://www.novapublishers.com/catalog/product_info.php?products_id=31918 |title=DNA repair as the primary adaptive function of sex in bacteria and eukaryotes. |chapter=Chapter 1 |pages=1–49 |series= DNA Repair: New Research |editor-first1=Sakura |editor-last1=Kimura |editor-first2=Sora |editor-last2=Shimizu |publisher=Nova Sci. Publ. |isbn=978-1-62100-808-8 |url-status=dead |archive-url=https://web.archive.org/web/20180722155931/https://www.novapublishers.com/catalog/product_info.php?products_id=31918 |archive-date= Jul 22, 2018 }}</ref> ====Protists==== {{Main|Protista}} [[File:Euglena mutabilis - 400x - 1 (10388739803) (cropped).jpg|thumb|upright=0.8|''[[Euglena|Euglena mutabilis]]'', a [[photosynthetic]] [[flagellate]]]] Of [[Eukaryote|eukaryotic]] groups, the [[protists]] are most commonly [[unicellular]] and microscopic. This is a highly diverse group of organisms that are not easy to classify.<ref>{{Cite journal|author=Cavalier-Smith T |author-link=Thomas Cavalier-Smith |title=Kingdom protozoa and its 18 phyla |journal=Microbiol. Rev. |volume=57 |issue=4 |pages=953–994 |date=1 December 1993|pmid=8302218 |pmc=372943 |doi=10.1128/mmbr.57.4.953-994.1993 |doi-access=free }}</ref><ref>{{Cite journal|last=Corliss |first=J. O. |title=Should there be a separate code of nomenclature for the protists? |journal=BioSystems |volume=28 |issue=1–3 |pages=1–14 |year=1992 |pmid=1292654 | doi=10.1016/0303-2647(92)90003-H|bibcode=1992BiSys..28....1C }}</ref> Several [[algae]] [[species]] are [[multicellular]] protists, and [[slime mold]]s have unique life cycles that involve switching between unicellular, colonial, and multicellular forms.<ref>{{Cite journal|author=Devreotes, P. |title=Dictyostelium discoideum: a model system for cell-cell interactions in development |journal=Science |volume=245 |issue=4922 |pages=1054–1058 |year=1989 |pmid=2672337 | doi=10.1126/science.2672337|bibcode=1989Sci...245.1054D }}</ref> The number of species of protists is unknown since only a small proportion has been identified. Protist diversity is high in oceans, deep sea-vents, river sediment and an acidic river, suggesting that many eukaryotic microbial communities may yet be discovered.<ref>{{Cite journal|author=Slapeta, J. |author2=Moreira, D. |author3=López-García, P. |title=The extent of protist diversity: insights from molecular ecology of freshwater eukaryotes |journal=Proc. Biol. Sci. |volume=272 |issue=1576 |pages=2073–2081 |year=2005 |pmid=16191619 |doi=10.1098/rspb.2005.3195 |pmc=1559898}}</ref><ref>{{Cite journal |author=Moreira, D. |author2=López-García, P. |title=The molecular ecology of microbial eukaryotes unveils a hidden world |journal=Trends Microbiol. |volume=10 |issue=1 |pages=31–38 |year=2002 |pmid=11755083 | url=http://download.bioon.com.cn/view/upload/month_0803/20080326_daa08a6fdb5d38e3a0d8VBrocN3WtOdR.attach.pdf | doi=10.1016/S0966-842X(01)02257-0}}</ref> ====Fungi==== {{Main|Fungus}} The [[fungus|fungi]] have several unicellular species, such as baker's yeast (''[[Saccharomyces cerevisiae]]'') and fission yeast (''[[Schizosaccharomyces pombe]]''). Some fungi, such as the pathogenic yeast ''[[Candida albicans]]'', can undergo [[phenotypic switching]] and grow as single cells in some environments, and [[Hypha|filamentous hyphae]] in others.<ref>{{Cite journal |author=Kumamoto, C.A. |author-link1=Carol Kumamoto|author2=Vinces, M. D. |title=Contributions of hyphae and hypha-co-regulated genes to Candida albicans virulence |journal=Cell. Microbiol. |volume=7 |issue=11 |pages=1546–1554 |year=2005 |pmid=16207242 | doi=10.1111/j.1462-5822.2005.00616.x|doi-access=free }}</ref> ====Plants==== {{Main|Plant}} The [[green algae]] are a large group of photosynthetic eukaryotes that include many microscopic organisms. Although some green algae are classified as [[protist]]s, others such as [[charophyta]] are classified with [[embryophyte]] plants, which are the most familiar group of land plants. Algae can grow as single cells, or in long chains of cells. The green algae include unicellular and colonial [[flagellate]]s, usually but not always with two [[flagellum|flagella]] per cell, as well as various colonial, [[Chlorococcales|coccoid]], and filamentous forms. In the [[Charales]], which are the algae most closely related to higher plants, cells differentiate into several distinct tissues within the organism. There are about 6000 species of green algae.<ref>{{Cite book |author=Thomas, David C. |title=Seaweeds |publisher=Natural History Museum |location=London |year=2002 |isbn=978-0-565-09175-0 }}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Microorganism
(section)
Add topic