Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Meromorphic function
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Examples== * All [[rational function]]s,<ref name=Lang_1999>{{cite book |last=Lang |first=Serge |author-link=Serge Lang |year=1999 |title=Complex analysis |publisher=[[Springer-Verlag]] |location=Berlin; New York |edition=4th |isbn=978-0-387-98592-3}}</ref> for example <math display="block"> f(z) = \frac{z^3 - 2z + 10}{z^5 + 3z - 1}, </math> are meromorphic on the whole complex plane. Furthermore, they are the only meromorphic functions on the [[riemann sphere|extended complex plane]]. * The functions <math display="block"> f(z) = \frac{e^z}{z} \quad\text{and}\quad f(z) = \frac{\sin{z}}{(z-1)^2} </math> as well as the [[gamma function]] and the [[Riemann zeta function]] are meromorphic on the whole complex plane.<ref name=Lang_1999/> * The function <math display="block"> f(z) = e^\frac{1}{z} </math> is defined in the whole complex plane except for the origin, 0. However, 0 is not a pole of this function, rather an [[essential singularity]]. Thus, this function is not meromorphic in the whole complex plane. However, it is meromorphic (even holomorphic) on <math>\mathbb{C} \setminus \{0\}</math>. * The [[complex logarithm]] function <math display="block"> f(z) = \ln(z) </math> is not meromorphic on the whole complex plane, as it cannot be defined on the whole complex plane while only excluding a set of isolated points.<ref name=Lang_1999/> * The function <math display="block"> f(z) = \csc\frac{1}{z} = \frac1{\sin\left(\frac{1}{z}\right)} </math> is not meromorphic in the whole plane, since the point <math>z = 0</math> is an [[accumulation point]] of poles and is thus not an [[isolated singularity]].<ref name=Lang_1999/> * The function <math display="block"> f(z) = \sin \frac 1 z </math> is not meromorphic either, as it has an essential singularity at 0.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Meromorphic function
(section)
Add topic