Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Magnetic circular dichroism
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Theory == Consider a system of localized, non-interacting absorbing centers. Based on the semi-classical radiation absorption theory within the electric dipole approximation, the electric vector of the circularly polarized waves propagates along the +z direction. In this system, <math>\omega=2\pi\nu</math> is the [[angular frequency]], and <math>\tilde{n}</math> = n β ik is the [[complex refractive index]]. As the light travels, the attenuation of the beam is expressed as<ref name="steph"/> :<math> I(z) = I(0) \exp(-2\omega kz/c) </math> where <math>I(z)</math> is the intensity of light at position <math>z</math>, <math>k</math> is the absorption coefficient of the medium in the <math>z</math> direction, and <math>c</math> is the speed of light. Circular dichroism (CD) is then defined by the difference between left (<math>-</math>) and right (<math>+</math>) circularly polarized light, <math>\Delta k = k_- - k_+</math>, following the sign convention of natural optical activity. In the presence of a static, uniform external magnetic field applied parallel to the direction of propagation of light,<ref name=buck/> the Hamiltonian for the absorbing center takes the form <math>\mathcal{H}(t) = \mathcal{H}_0 + \mathcal{H}_1(t)</math> for <math>\mathcal{H}_0</math> describing the system in the external magnetic field and <math>\mathcal{H}_1(t)</math> describing the applied electromagnetic radiation. The absorption coefficient for a transition between two eigenstates of <math>\mathcal{H}_0</math>, <math>a</math> and <math>j</math>, can be described using the electric dipole transition operator <math>m</math> as :<math> [k_\pm (a \to j)] = \int_{0}^{\infty} k_\pm (a \to j) d \omega = \frac{\pi^2}{\hbar} (N_a - N_j) \left(\frac{\alpha^2}{n}\right) \left| \langle a | m_\pm | j \rangle \right|^2 </math> :<math> [\Delta k (a \to j)] = \int_{0}^{\infty} \Delta k (a \to j) d \omega = \frac{\pi^2}{\hbar} (N_a - N_j) \left(\frac{\alpha^2}{n}\right) \left( \left| \langle a | m_- | j \rangle \right|^2 - \left| \langle a | m_+| j \rangle \right|^2 \right) </math> The <math>(\alpha^2/n)</math> term is a frequency-independent correction factor allowing for the effect of the medium on the light wave electric field, composed of the permittivity <math>\alpha</math> and the real refractive index <math>n</math>. === Discrete line spectrum === In cases of a discrete spectrum, the observed <math>\Delta k</math> at a particular frequency <math>\omega</math> can be treated as a sum of contributions from each transition, :<math>\Delta k_\mathrm{obs}(\omega) = \sum_{a,j} \Delta k_{a\to j}(\omega) = \sum_{a,j} [\Delta k_{a\to j}]f_{ja}(\omega)</math> where <math>\Delta k_{a\to j}(\omega)</math> is the contribution at <math>\omega</math> from the <math>a\to j</math> transition, <math>[\Delta k_{a\to j}]</math> is the absorption coefficient for the <math>a\to j</math> transition, and <math>f_{ja}(\omega)</math> is a bandshape function (<math>\textstyle{\int_{0}^{\infty} f_{ja}(\omega) d \omega = 1}</math>). Because eigenstates <math>a</math> and <math>j</math> depend on the applied external field, the value of <math>\Delta k_\mathrm{obs}(\omega)</math> varies with field. It is frequently useful to compare this value to the absorption coefficient in the absence of an applied field, often denoted :<math>k^0(\omega) = \sum_{a,j} k^0_{a\to j}(\omega) = \sum_{a,j} [k^0_{a\to j}]f^0_{ja}(\omega)</math> When the [[Zeeman effect]] is small compared to zero-field state separations, line width, and <math>kT</math> and when the line shape is independent of the applied external field <math>H</math>, first-order perturbation theory can be applied to separate <math>\Delta k</math> into three contributing [[Faraday effect|Faraday]] terms, called <math>\mathcal{A}_1</math>, <math>\mathcal{B}_0</math>, and <math>\mathcal{C}_0</math>. The subscript indicates the moment such that <math>\mathcal{A}_1</math> contributes a derivative-shaped signal and <math>\mathcal{B}_0</math> and <math>\mathcal{C}_0</math> contribute regular absorptions. Additionally, a zero-field absorption term <math>\mathcal{D}_0</math> is defined. The relationships between <math>\Delta k</math>, <math>k^0</math>, and these Faraday terms are :<math>\Delta k_{A\to J}(\omega) = -\frac{4}{3} \gamma N^0_A \left\{\frac{\mathcal{A}_1(A\to J)}{\hbar} \frac{\partial f^0_{ja}(\omega)}{\partial \omega} + \left[\mathcal{B}_0(A\to J) + \frac{\mathcal{C}_0(A\to J)}{k_BT}\right]f^0_{ja}(\omega)\right\}H </math> :<math>k^0_{A\to J}(\omega) = \frac{2}{3} \gamma N_A^0 \mathcal{D}_0(A\to J) f^0_{ja}(\omega)</math> for external field strength <math>H</math>, Boltzmann constant <math>k_B</math>, temperature <math>T</math>, and a proportionality constant <math>\gamma</math>. This expression requires assumptions that <math>j</math> is sufficiently high in energy that <math>N_j \approx 0</math>, and that the temperature of the sample is high enough that magnetic saturation does not produce nonlinear <math>\mathcal{C}</math> term behavior. Though one must pay attention to proportionality constants, there is a proportionality between <math>\Delta k</math> and [[Molar attenuation coefficient|molar extinction coefficient]] <math>\epsilon</math> and absorbance <math>A/Cl</math> for concentration <math>C</math> and path length <math>l</math>. These Faraday terms are the usual language in which MCD spectra are discussed. Their definitions from perturbation theory are<ref name=steph2>{{cite book|author=Stephens, P. J.|title=Advances in Chemical Physics |journal=Adv. Chem. Phys.|date=1976|volume=35|pages=197β264|doi=10.1002/9780470142547.ch4|chapter=Magnetic Circular Dichroism|isbn=9780470142547}}</ref> :<math>\begin{align} \mathcal{A}_1 &= -\frac{1}{d_A} \sum_{\alpha,\lambda} \left( \langle J_\lambda |L_z+2S_z| J_\lambda\rangle - \langle A_\alpha |L_z+2S_z| A_\alpha\rangle\right) \times \left(|\langle A_\alpha|m_-|J_\lambda\rangle|^2 - \langle A_\alpha|m_+|J_\lambda\rangle|^2\right) \\ \mathcal{B}_0 &= \frac{2}{d_A} \Re \sum_{\alpha,\lambda}\left[ \sum_{K\neq J,\kappa} \frac{1}{E_K-E_J} \langle J_\lambda |L_z+2S_z| K_\kappa\rangle \times \left(\langle A_\alpha|m_-|J_\lambda\rangle\langle K_\kappa|m_+|A_\alpha\rangle - \langle A_\alpha|m_+|J_\lambda\rangle\langle K_\kappa|m_-|A_\alpha\rangle\right) \right. \\ &\qquad \left. + \sum_{K\neq A,\kappa} \frac{1}{E_K-E_A} \langle K_\kappa |L_z+2S_z| A_\alpha\rangle \times \left( \langle A_\alpha|m_-|J_\lambda\rangle\langle J_\lambda|m_+|K_\kappa\rangle - \langle A_\alpha|m_+|J_\lambda\rangle\langle J_\lambda|m_-|K_\kappa\rangle \right) \right] \\ \mathcal{C}_0 &= \frac{1}{d_A} \sum_{\alpha,\lambda} \langle A_\alpha|L_z+2S_z|A_\alpha\rangle \times \left(|\langle A_\alpha|m_-|J_\lambda\rangle|^2 - \langle A_\alpha|m_+|J_\lambda\rangle|^2\right) \\ \mathcal{D}_0 &= \frac{1}{2d_A} \sum_{\alpha,\lambda} \left(|\langle A_\alpha|m_-|J_\lambda\rangle|^2 + \langle A_\alpha|m_+|J_\lambda\rangle|^2\right) \end{align}</math> where <math>d_A</math> is the degeneracy of ground state <math>A</math>, <math>K</math> labels states other than <math>A</math> or <math>J</math>, <math>\alpha</math> and <math>\lambda</math> and <math>\kappa</math> label the levels within states <math>A</math> and <math>J</math> and <math>K</math> (respectively), <math>E_X</math> is the energy of unperturbed state <math>X</math>, <math>L_z</math> is the <math>z</math> angular momentum operator, <math>S_z</math> is the <math>z</math> spin operator, and <math>\Re</math> indicates the real part of the expression. ===Origins of A, B, and C Faraday Terms=== [[File:MCD-ABC-terms.svg|thumb|upright=2|<math>\mathcal{A}_1</math>, <math>\mathcal{B}_0</math>, and <math>\mathcal{C}_0</math> term intensity mechanisms for magnetic circular dichroism (MCD) signal]] The equations in the previous subsection reveal that the <math>\mathcal{A}_1</math>, <math>\mathcal{B}_0</math>, and <math>\mathcal{C}_0</math> terms originate through three distinct mechanisms. The <math>\mathcal{A}_1</math> term arises from Zeeman splitting of the ground or excited degenerate states. These field-dependent changes in energies of the magnetic sublevels causes small shifts in the bands to higher/lower energy. The slight offsets result in incomplete cancellation of the positive and negative features, giving a net derivative shape in the spectrum. This intensity mechanism is generally independent of sample temperature. The <math>\mathcal{B}_0</math> term is due to the field-induced mixing of states. Energetic proximity of a third state <math>|K\rangle</math> to either the ground state <math>|A\rangle</math> or excited state <math>|J\rangle</math> gives appreciable [[Zeeman effect|Zeeman coupling]] in the presence of an applied external field. As the strength of the magnetic field increases, the amount of mixing increases to give growth of an absorption band shape. Like the <math>\mathcal{A}_1</math> term, the <math>\mathcal{B}_0</math> term is generally temperature independent. Temperature dependence of <math>\mathcal{B}_0</math> term intensity can sometimes be observed when <math>|K\rangle</math> is particularly low-lying in energy. The <math>\mathcal{C}_0</math> term requires the degeneracy of the ground state, often encountered for paramagnetic samples. This happens due to a change in the [[Boltzmann distribution|Boltzmann population]] of the magnetic sublevels, which is dependent on the degree of field-induced splitting of the sublevel energies and on the sample temperature.<ref>{{cite journal|author1=Lehnert, N. |author2=DeBeer George, S. |author3=Solomon, E. I. |author-link3=Edward I. Solomon |journal=Current Opinion in Chemical Biology|date=2001|volume=5|pages=176β187|doi=10.1016/S1367-5931(00)00188-5|pmid=11282345|title=Recent advances in bioinorganic spectroscopy|issue=2}}</ref> Decrease of the temperature and increase of the magnetic field increases the <math>\mathcal{C}_0</math> term intensity until it reaches the maximum (saturation limit). Experimentally, the <math>\mathcal{C}_0</math> term spectrum can be obtained from MCD raw data by subtraction of MCD spectra measured in the same applied magnetic field at different temperatures, while <math>\mathcal{A}_1</math> and <math>\mathcal{B}_0</math> terms can be distinguished via their different band shapes.<ref name=solomon/> The relative contributions of A, B and C terms to the MCD spectrum are proportional to the inverse line width, energy splitting, and temperature: :<math>A:B:C = \frac{1} {\Delta \Gamma} : \frac {1} {\Delta E} : \frac{1}{kT}</math> where <math>\Delta \Gamma</math> is line width and <math>\Delta E</math> is the zero-field state separation. For typical values of <math>\Delta \Gamma</math> = 1000 cm<sup>β1</sup>, <math>\Delta E</math> = 10,000 cm<sup>β1</sup> and <math>kT</math> = 6 cm<sup>β1</sup> (at 10 K), the three terms make relative contributions 1:0.1:150. So, at low temperature the <math>\mathcal{C}_0</math> term dominates over <math>\mathcal{A}_1</math> and <math>\mathcal{B}_0</math> for paramagnetic samples.<ref>{{cite journal|author1=Neese, F. |author2=Solomon, E. I. |author-link2=Edward I. Solomon |journal=Inorg. Chem.|date=1999|volume=38|pages=1847β1865|doi=10.1021/ic981264d|pmid=11670957|title=MCD C-Term Signs, Saturation Behavior, and Determination of Band Polarizations in Randomly Oriented Systems with Spin S >/= (1)/(2). Applications to S = (1)/(2) and S = (5)/(2)|issue=8}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Magnetic circular dichroism
(section)
Add topic