Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Linear programming
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Augmented form (slack form) == Linear programming problems can be converted into an ''augmented form'' in order to apply the common form of the [[simplex algorithm]]. This form introduces non-negative ''[[slack variable]]s'' to replace inequalities with equalities in the constraints. The problems can then be written in the following [[block matrix]] form: : Maximize <math>z</math>: : <math> \begin{bmatrix} 1 & -\mathbf{c}^\mathsf{T} & 0 \\ 0 & \mathbf{A} & \mathbf{I} \end{bmatrix} \begin{bmatrix} z \\ \mathbf{x} \\ \mathbf{s} \end{bmatrix} = \begin{bmatrix} 0 \\ \mathbf{b} \end{bmatrix} </math> :<math>\mathbf{x} \ge 0, \mathbf{s} \ge 0</math> where <math>\mathbf{s}</math> are the newly introduced slack variables, <math>\mathbf{x}</math> are the decision variables, and <math>z</math> is the variable to be maximized. === Example === The example above is converted into the following augmented form: :{| |- | colspan="2" | Maximize: <math>S_1\cdot x_1+S_2\cdot x_2</math> | (objective function) |- | subject to: | <math>x_1 + x_2 + x_3 = L</math> | (augmented constraint) |- | | <math>F_1\cdot x_1+F_2\cdot x_2 + x_4 = F</math> | (augmented constraint) |- | | <math>P_1\cdot x_1 + P_2\cdot x_2 + x_5 = P</math> | (augmented constraint) |- | | <math>x_1,x_2,x_3,x_4,x_5 \ge 0.</math> |} where <math>x_3, x_4, x_5</math> are (non-negative) slack variables, representing in this example the unused area, the amount of unused fertilizer, and the amount of unused pesticide. In matrix form this becomes: : Maximize <math>z</math>: : <math display=block> \begin{bmatrix} 1 & -S_1 & -S_2 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & F_1 & F_2 & 0 & 1 & 0 \\ 0 & P_1 & P_2 & 0 & 0 & 1 \\ \end{bmatrix} \begin{bmatrix} z \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 0 \\ L \\ F \\ P \end{bmatrix}, \, \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} \ge 0. </math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Linear programming
(section)
Add topic