Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Legendre polynomials
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Rodrigues' formula and other explicit formulas === An especially compact expression for the Legendre polynomials is given by [[Rodrigues' formula]]: <math display="block">P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 -1)^n \,.</math> This formula enables derivation of a large number of properties of the <math>P_n</math>'s. Among these are explicit representations such as <math display="block">\begin{align} P_n(x) & = [t^n] \frac{\left((t+x)^2 - 1\right)^n}{2^n} = [t^n] \frac{\left(t+x+1\right)^n \left(t+x-1\right)^n}{2^n}, \\[1ex] P_n(x)&= \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k}^{\!2} (x-1)^{n-k}(x+1)^k, \\[1ex] P_n(x)&= \sum_{k=0}^n \binom{n}{k} \binom{n+k}{k} \left( \frac{x-1}{2} \right)^{\!k}, \\[1ex] P_n(x)&= \frac{1}{2^n}\sum_{k=0}^{\left\lfloor n/2 \right\rfloor} \left(-1\right)^k \binom{n}{k}\binom{2n-2k}n x^{n-2k},\\[1ex] P_n(x)&= 2^n \sum_{k=0}^n x^k \binom{n}{k} \binom{\frac{n+k-1}{2}}{n}, \\[1ex] P_n(x)&=\frac{1}{2^n n!}\sum_{k=\lceil n/2 \rceil}^{n}\frac{(-1)^{k+n}(2k)!}{(2k-n)!(n-k)!k!}x^{2k-n}, \\[1ex] P_n(x)&= \begin{cases} \displaystyle\frac{1}{\pi}\int_0^\pi {\left(x+\sqrt{x^2-1}\cdot\cos (t) \right)}^n\,dt & \text{if } |x|>1, \\ x^n & \text{if } |x|=1, \\ \displaystyle\frac{2}{\pi}\cdot x^n\cdot |x|\cdot \int_{|x|}^1 \frac{t^{-n-1}}{\sqrt{t^2-x^2}}\cdot \frac{\cos\left(n\cdot \arccos(t)\right)}{\sin\left(\arccos(t)\right)}\,dt & \text{if } 0<|x|<1, \\ \displaystyle(-1)^{n/2}\cdot2^{-n}\cdot \binom{n}{n/2} & \text{if } x=0 \text{ and }n\text{ even}, \\ 0 & \text{if } x=0 \text{ and }n\text{ odd}. \end{cases} \end{align}</math> Expressing the polynomial as a power series, <math display="inline">P_n(x) = \sum a_{n,k} x^k </math>, the coefficients of powers of <math>x</math> can also be calculated using the recurrences <math display="block">a_{n,k} = - \frac{(n-k+2)(n+k-1)}{k(k-1)}a_{n,k-2}. </math> or <math> a_{n,k}=-\frac{n+k-1}{n-k}a_{n-2,k}. </math> The Legendre polynomial is determined by the values used for the two constants <math display="inline">a_{n,0}</math> and <math display="inline">a_{n,1} </math>, where <math display="inline">a_{n,0}=0 </math> if <math>n</math> is odd and <math display="inline">a_{n,1}=0 </math> if <math>n</math> is even.<ref>{{Cite book |last=Boas |first=Mary L. |title=Mathematical methods in the physical sciences |date=2006 |publisher=Wiley |isbn=978-0-471-19826-0 |edition=3rd |location=Hoboken, NJ}}</ref> In the fourth representation, <math>\lfloor n/2 \rfloor</math> stands for the [[floor function|largest integer less than or equal to]] <math>n/2</math>. The last representation, which is also immediate from the recursion formula, expresses the Legendre polynomials by simple monomials and involves the [[Binomial coefficient#Generalization and connection to the binomial series|generalized form of the binomial coefficient]]. The reversal of the representation as a power series is <ref>{{cite book|first1=Wilhelm|last1=Magnus|first2=Fritz|last2=Oberhettinger|year=1943|title=Formeln und Satze fur die speziellen Funktionen der Mathematischen Physik|publisher=Springer|series=Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen|volume=52|isbn=978-3-662-41656-3|oclc=1026897547|mr=0022272}}</ref><ref>{{cite book|first1=I. S.|last1=Gradshteyn|first2=I. M.|last2=Ryzhik|year=2015|title=Table of Integrals, Series, and Products|publisher=Elsevier|isbn=978-0-12-384933-5|mr=3307944}}</ref> <math> x^m =\sum_{s= 0}^{\lfloor m/2\rfloor} (2m-4s+1) \frac{(2s+2)(2s+4)\cdots 2\lfloor m/2\rfloor}{(2m-2s+1)(2m-2s-1)(2m-2s-3)\cdots (1+2\lfloor (m+1)/2\rfloor)}P_{m-2s}(x). </math> for <math>m=0,1,2,\ldots</math>, where an empty product in the numerator (last factor less than the first factor) evaluates to 1. The first few Legendre polynomials are: {| class="wikitable" style="text-align: right;" ! <math>n</math> !! <math>P_n(x)</math> |- |0 || <math display="inline">1</math> |- |1 || <math display="inline">x</math> |- |2 || <math display="inline">\tfrac12 \left(3x^2-1\right)</math> |- |3 || <math display="inline">\tfrac12 \left(5x^3-3x\right)</math> |- |4 || <math display="inline">\tfrac18 \left(35x^4-30x^2+3\right)</math> |- |5 || <math display="inline">\tfrac18 \left(63x^5-70x^3+15x\right)</math> |- |6 || <math display="inline">\tfrac1{16} \left(231x^6-315x^4+105x^2-5\right)</math> |- |7 || <math display="inline">\tfrac1{16} \left(429x^7-693x^5+315x^3-35x\right)</math> |- |8 || <math display="inline">\tfrac1{128} \left(6435x^8-12012x^6+6930x^4-1260x^2+35\right)</math> |- |9 || <math display="inline">\tfrac1{128} \left(12155x^9-25740x^7+18018x^5-4620x^3+315x\right)</math> |- |10 || <math display="inline">\tfrac1{256} \left(46189x^{10}-109395x^8+90090x^6-30030x^4+3465x^2-63\right)</math> |} The graphs of these polynomials (up to {{math|1=''n'' = 5}}) are shown below: [[File:Legendrepolynomials6.svg|640px|none|Plot of the six first Legendre polynomials.]]
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Legendre polynomials
(section)
Add topic