Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Latin square
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Equivalence classes of Latin squares=== {{see also|Small Latin squares and quasigroups}} Many operations on a Latin square produce another Latin square (for example, turning it upside down). If we permute the rows, permute the columns, or permute the names of the symbols of a Latin square, we obtain a new Latin square said to be ''[[Quasigroup#Homotopy and isotopy|isotopic]]'' to the first. Isotopism is an [[equivalence relation]], so the set of all Latin squares is divided into subsets, called ''isotopy classes'', such that two squares in the same class are isotopic and two squares in different classes are not isotopic. Another type of operation is easiest to explain using the orthogonal array representation of the Latin square. If we systematically and consistently reorder the three items in each triple (that is, permute the three columns in the array form), another orthogonal array (and, thus, another Latin square) is obtained. For example, we can replace each triple (''r'',''c'',''s'') by (''c'',''r'',''s'') which corresponds to transposing the square (reflecting about its main diagonal), or we could replace each triple (''r'',''c'',''s'') by (''c'',''s'',''r''), which is a more complicated operation. Altogether there are 6 possibilities including "do nothing", giving us 6 Latin squares called the conjugates (also [[parastrophe]]s) of the original square.<ref name=DK126>{{harvnb|Dénes|Keedwell|1974|loc=p. 126}}</ref> Finally, we can combine these two equivalence operations: two Latin squares are said to be ''paratopic'', also ''main class isotopic'', if one of them is isotopic to a conjugate of the other. This is again an equivalence relation, with the equivalence classes called ''main classes'', ''species'', or ''paratopy classes''.<ref name=DK126 /> Each main class contains up to six isotopy classes.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Latin square
(section)
Add topic