Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Klein four-group
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Graph theory == Among the [[simple graph|simple]] [[connected graph]]s, the simplest (in the sense of having the fewest entities) that admits the Klein four-group as its [[graph automorphism|automorphism group]] is the [[diamond graph]] shown below. It is also the automorphism group of some other graphs that are simpler in the sense of having fewer entities. These include the graph with four vertices and one edge, which remains simple but loses connectivity, and the graph with two vertices connected to each other by two edges, which remains connected but loses simplicity. {{multiple image|align = center|perrow = 3 | image1 = Diamond graph.svg | width1=150 | height1=150 | image2 = Klein 4-Group Graph.svg | width2=150 | height2=150 | image3 = Digon graph.svg | width3=338 | height3=150 }}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Klein four-group
(section)
Add topic