Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Jones calculus
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Arbitrarily rotated elements == {{expand section|date=July 2014}} Finding the Jones matrix, J(''α'', ''β'', ''γ''), for an arbitrary rotation involves a three-dimensional [[rotation matrix]]. In the following notation ''α'', ''β'' and ''γ'' are the [[Yaw pitch roll|yaw, pitch, and roll]] angles (rotation about the z-, y-, and x-axes, with x being the direction of propagation), respectively. The full combination of the 3-dimensional rotation matrices is the following: :<math>R_{3D}(\theta)=\begin{bmatrix} \cos\alpha\cos\beta & \cos\alpha\sin\beta\sin\gamma - \sin\alpha\cos\gamma & \cos\alpha\sin\beta\cos\gamma + \sin\alpha\sin\gamma \\ \sin\alpha\cos\beta & \sin\alpha\sin\beta\sin\gamma + \cos\alpha\cos\gamma & \sin\alpha\sin\beta\cos\gamma - \cos\alpha\sin\gamma \\ -\sin\beta & \cos\beta\sin\gamma & \cos\beta\cos\gamma \\ \end{bmatrix}</math> Using the above, for any base Jones matrix J, you can find the rotated state J(''α'', ''β'', ''γ'') using: :<math>J(\alpha,\beta,\gamma) = R_{3D}(-\alpha,-\beta,-\gamma)\cdot J \cdot R_{3D}(\alpha,\beta,\gamma)</math><ref name=spie/> The simplest case, where the Jones matrix is for an ideal linear horizontal polarizer, reduces then to: :<math>J(\alpha, \beta, \gamma) = \begin{bmatrix} c^2_{\alpha} c^2_{\beta} & c_{\alpha} c_{\beta} [c_{\alpha} s_{\beta} s_{\gamma} - s_{\alpha} c_{\gamma}] & c_{\alpha} c_{\beta} [c_{\alpha} s_{\beta} c_{\gamma} + s_{\alpha} s_{\gamma}]\\ s_{\alpha} c_{\alpha} c^2_{\beta} & s_{\alpha} c_{\beta} [c_{\alpha} s_{\beta} s_{\gamma} - s_{\alpha} c_{\gamma}] & s_{\alpha} c_{\beta} [c_{\alpha} s_{\beta} c_{\gamma} + s_{\alpha} s_{\gamma}] \\ -c_{\alpha} s_{\beta} c_{\beta} & -s_{\beta} [c_{\alpha} s_{\beta} s_{\gamma} - s_{\alpha} c_{\gamma}] & -s_{\beta} [c_{\alpha} s_{\beta} c_{\gamma} + s_{\alpha} s_{\gamma}]\\ \end{bmatrix} </math> where c<sub>i</sub> and s<sub>i</sub> represent the cosine or sine of a given angle "i", respectively. See Russell A. Chipman and Garam Yun for further work done based on this.<ref name="Chipman Lam Young 2018 p.">{{cite book | last1=Chipman | first1=R.A. | last2=Lam | first2=W.S.T. | last3=Young | first3=G. | title=Polarized Light and Optical Systems | publisher=CRC Press | series=Optical Sciences and Applications of Light | year=2018 | isbn=978-1-4987-0057-3 | url=https://books.google.com/books?id=saVuDwAAQBAJ | access-date=2023-01-20 | page=}}</ref><ref>{{cite journal |first=Russell A. |last=Chipman |year=1995 |title=Mechanics of polarization ray tracing |journal=Opt. Eng. |volume=34 |issue=6 |pages=1636–1645 |doi=10.1117/12.202061 |bibcode=1995OptEn..34.1636C }}</ref><ref>{{cite journal |title=Three-dimensional polarization ray-tracing calculus I: definition and diattenuation |journal=[[Applied Optics (journal)|Applied Optics]] |first1=Garam |last1=Yun |first2=Karlton |last2=Crabtree |first3=Russell A. |last3=Chipman |volume=50 |issue= 18|pages=2855–2865 |year=2011 |doi=10.1364/AO.50.002855 |pmid=21691348 |bibcode=2011ApOpt..50.2855Y }}</ref><ref>{{cite journal |title=Three-dimensional polarization ray-tracing calculus II: retardance |journal=Applied Optics |first1=Garam |last1=Yun |first2=Stephen C. |last2=McClain |first3=Russell A. |last3=Chipman |volume=50 |issue= 18|pages=2866–2874 |year=2011 |doi=10.1364/AO.50.002866 |pmid=21691349 |bibcode=2011ApOpt..50.2866Y }}</ref><ref>{{cite thesis |hdl=10150/202979 |first=Garam |last=Yun |title=Polarization Ray Tracing |type=PhD thesis |date=2011 |publisher=University of Arizona }}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Jones calculus
(section)
Add topic